Resistencia sísmica en sistemas estructurales: análisis mediante PML Y PAE

Autores/as

Hector Aroquipa Velasquez
Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
https://orcid.org/0000-0002-6502-5618

Palabras clave:

resiliencia, vulnerabilidad, tiempos de reparación-reposición, perdida máxima probable, pérdida anual esperada

Sinopsis

El propósito principal de esta investigación es determinar la continuidad funcional de los sistemas estructurales frente a eventos sísmicos, evaluada a través de los parámetros PML (Pérdida Máxima Probable) y PAE (Pérdida Anual Esperada), considerando su nivel de vulnerabilidad. Desde el punto de vista metodológico, se adopta un enfoque cuantitativo de nivel predictivo. Este enfoque implica la identificación de la probabilidad futura de daños, las pérdidas máximas probables y las pérdidas esperadas en edificaciones. El objetivo principal es establecer un índice de resiliencia que refleje la capacidad de los sistemas estructurales para recuperarse de eventos sísmicos.

La metodología empleada describe el comportamiento y las incertidumbres en diversas etapas de análisis, utilizando el método de simulación de Monte Carlo. Esta simulación integra variables aleatorias definidas en la metodología para evaluar los daños en diferentes intensidades sísmicas, considerando las incertidumbres asociadas. En los resultados obtenidos, se explica detalladamente cómo se determinaron los índices de resiliencia. La metodología aplicada permite cuantificar los costos de reparación de los daños en el sistema estructural, abarcando aspectos estructurales, no estructurales y contenidos, para diversas intensidades sísmicas y, en consecuencia, calcular el índice de resiliencia.

En conclusión, se destaca la posibilidad de incluir los costos por pérdidas consecuenciales en el análisis. Esto se logra mediante la definición de gastos para la recuperación de la edificación a su estado original de servicio antes del evento, en función de los parámetros PML y PAE. Los elementos asociados con las labores de intervención para la restauración de la edificación abarcan costos operativos, costos de mano de obra y el análisis de riesgo ante múltiples escenarios.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Ã, A. Y. (2004). Preliminary seismic performance assessment procedure for existing RC buildings. 26, 1447–1461. https://doi.org/10.1016/j.engstruct.2004.05.011

Access, O. (2018). Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions. https://doi.org/10.1088/1757-899X/318/1/012021

Acevedo, A. B., María, H. S., & Hube, M. A. (2017). Uso de encuestas digitales remotas para el desarrollo de modelos de exposición sísmica Use of remote digital surveys in the development of seismic exposure models. May.

Agency, F. E. M. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Reporte FEMA 273.

Agency, F. E. M. (2006). Techniques for the seismic rehabilitation of existing buildings. FEMA.

Ahmad, N., Crowley, H., & Pinho, R. (2011). Analytical fragility functions for reinforced concrete and masonry buildings and building aggregates of Euro-Mediterranean regions. Department of Structural Mechanics, University of Pavia. WP3-Task, 3.

Ahmad, N., Ibrahim, A., & Alam, S. (2019). Analytical Seismic Fragility Curves for Reinforced Concrete Wall pier using Shape Memory Alloys considering maximum drift. MATEC Web of Conferences, 258, 04001. https://doi.org/10.1051/matecconf/201925804001

Akansel, V. H., Yakut, A., & Gülkan, P. (2012). Fragility of shear wall buildings with torsional irregularity. 15th World Conference on Earthquake Engineering.

Alas, R., & Grijalva, S. (2018). Evaluación De La Vulnerabilidad Sísmica , Por Medio De Curvas De Fragilidad , Utilizando El Análisis Dinámico no Lineal incremental.

Albuquerque, P. (n.d.). Seismic vulnerability assessment of medium-rise buildings using the Index Method : the case of block # 22 of Santa Maria Hospital. 1–19.

Alessandri, S., Giannini, R., & Paolacci, F. (2011). A new method for probabilistic aftershock risk evaluation of damaged bridge. ECCOMAS Thematic Conference - COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme, May, 25–28.

Allen, D. E., & Rainer, J. H. (1995). Guidelines for the seismic evaluation of existing buildings. Canadian Journal of Civil Engineering, 22(3), 500–505. https://doi.org/10.1139/l95-058

AmiriHormozaki, E., Pekcan, G., & Itani, A. (2015a). Analytical fragility functions for horizontally curved steel I-girder highway bridges. Earthquake Spectra, 31(4), 2235–2254. https://doi.org/10.1193/022213EQS049M

AmiriHormozaki, E., Pekcan, G., & Itani, A. (2015b). Analytical fragility functions for horizontally curved steel I-girder highway bridges. Earthquake Spectra, 31(4), 2235–2254.

Andrić, J. M., & Lu, D. G. (2017). Fuzzy methods for prediction of seismic resilience of bridges. International Journal of Disaster Risk Reduction, 22, 458–468. https://doi.org/10.1016/j.ijdrr.2017.01.001

Ansal, A., Akinci, A., Cultrera, G., Erdik, M., Pessina, V., Tönük, G., & Ameri, G. (2009). Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey). Soil Dynamics and Earthquake Engineering, 29(4), 699–709.

Antoniou, S., & Pinho, R. (2004). Development and verification of a displacement-based adaptive pushover procedure. Journal of Earthquake Engineering, 8(5), 643–661. https://doi.org/10.1080/13632460409350504

Anvarsamarin, A., Rofooei, F. R., & Nekooei, M. (2018). Soil-structure interaction effect on fragility curve of 3D models of concrete moment-resisting buildings. Shock and Vibration, 2018.

Aroquipa, H. (2019). Evaluación de alternativas de reforzamiento sísmico incremental para edificaciones escolares características en el Perú Evaluation of alternatives of incremental seismic reinforcement for school buildings characteristics in Perú . XV CONGRESO INTERNACIONAL DE PATOLOGÍA Y RECUPERACIÓN DE ESTRUCTURAS.

Aroquipa, H. (2022). Resiliencia de los sistemas estructurales ante eventos sísmicos evaluados mediante las PML y PAE [Universidad Nacional Federico Villarreal]. In Universidad Nacional Federico Villarreal. http://repositorio.unfv.edu.pe/handle/20.500.13084/6147

Aroquipa, H., & Hurtado, A. (2022a). Seismic resilience assessment of buildings: A simplified methodological approach through conventional seismic risk assessment. International Journal of Disaster Risk Reduction, 77(February), 103047. https://doi.org/10.1016/j.ijdrr.2022.103047

Aroquipa, H., Hurtado, A., Angel, C., Aroquipa, A., Gamarra, A., & Almeida Del Savio, A. (2023). A cost-benefit analysis for the appraisal of social and market prices in the probabilistic seismic risk assessment of building portfolios: A methodology for the evaluation of disaster risk reduction programs. International Journal of Disaster Risk Reduction, 90(October 2022), 103637. https://doi.org/10.1016/j.ijdrr.2023.103637

Aroquipa, H., & Hurtado, A. I. (2022b). Incremental seismic retrofitting for essential facilities using performance objectives: A case study of the 780-PRE school buildings in Peru. Journal of Building Engineering, 62, 105387. https://doi.org/10.1016/j.jobe.2022.105387

Aroquipa, H., Hurtado, A., Leon, F., Gamarra, A., Angel, C., Olivera, A., Massa, L. A., & Paz, R. (2023). Simplified methodological approach for estimating the mean repair time of building portfolios directed to the development of seismic resilience policies, based on the distribution of resources. Journal of Building Pathology and Rehabilitation, 8(2), 72. https://doi.org/10.1007/s41024-023-00321-2

Aroquipa, H., Rincon, R., & Fernandez, R. (2017). Evaluación de alternativas de reforzamiento sísmico incremental para edificaciones escolares características en el Perú. VIII Congreso Nacional de Ingeniería Sísmica, 1.

Aroquipa, H., & Yamin, L. (2016). Evaluación de la vulnerabilidad sísmica de edificaciones en concreto reforzado mediante análisis dinámico no lineal simplificado [Uniandes]. http://hdl.handle.net/1992/13900

Aroquipa, H., Yamín, L. E., Reyes, J. C., & Rincón, J. R. (2016). Evaluación de la vulnerabilidad sísmica de edificaciones en concreto reforzado mediante análisis dinámico no lineal simplificado LK - https://univdelosandes.on.worldcat.org/oclc/1027979102 [Uniandes]. https://biblioteca.uniandes.edu.co/acepto201699.php?id=11197.pdf.bk

Asgarian, B., Sadrinezhad, A., & Alanjari, P. (2010). Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis. Journal of Constructional Steel Research, 66(2), 178–190. https://doi.org/10.1016/j.jcsr.2009.09.001

Askan, A., & Yucemen, M. S. (2010). Probabilistic methods for the estimation of potential seismic damage: Application to reinforced concrete buildings in Turkey. Structural Safety, 32(4), 262–271. https://doi.org/10.1016/j.strusafe.2010.04.001

ATC, S. (1996). Evaluation and retrofit of concrete buildings, Rep. ATC-40, Applied Technology Council, Redwood City, California.

Athmani, A. E., Gouasmia, A., Ferreira, T. M., Vicente, R., & Khemis, A. (2015). Seismic vulnerability assessment of historical masonry buildings located in Annaba city (Algeria) using non ad-hoc data survey. Bulletin of Earthquake Engineering, 13(8), 2283–2307.

Athmani, A., Ferreira, T. M., & Vicente, R. (2018). Seismic risk assessment of the historical urban areas of Annaba city, Algeria. International Journal of Architectural Heritage, 12(1), 47–62.

Augusti, G., & Ciampoli, M. (2008). Performance-based design in risk assessment and reduction. Probabilistic Engineering Mechanics, 23(4), 496–508.

Azizan, N. Z. N., Majid, T. A., Nazri, F. M., Maity, D., & Abdullah, J. (2018). Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions. IOP Conference Series: Materials Science and Engineering, 12021.

Azizi-Bondarabadi, H., Mendes, N., Lourenço, P. B., & Sadeghi, N. H. (2016). Empirical seismic vulnerability analysis for masonry buildings based on school buildings survey in Iran. Bulletin of Earthquake Engineering, 14(11), 3195–3229.

Babič, A., & Dolšek, M. (2016). Seismic fragility functions of industrial precast building classes. Engineering Structures, 118, 357–370. https://doi.org/10.1016/j.engstruct.2016.03.069

Baggio, C., Bernardini, A., Colozza, R., Corazza, L., Bella, M., Di Pasquale, G., Dolce, M., Goretti, A., Martinelli, A., Orsini, G., Papa, F., & Zuccaro, G. (2007). Field Manual for post-earthquake damage and safety assessment and short term countermeasures ( AeDES ). In JRC Scientific and Thechnical Reports.

Baker, J. W. (2007). Measuring bias in structural response caused by ground motion scaling. Pacific Conference on Earthquake Engineering, 056, 1–6. https://doi.org/10.1002/eqe

Baker, J. W. (2012). Measuring bias in structural response caused by ground motion scaling. Pacific Conference on Earthquake Engineering, 056, 1–6. https://doi.org/10.1002/eqe

Bakhshi, A., & Asadi, P. (2013). Probabilistic evaluation of seismic design parameters of RC frames based on fragility curves. Scientia Iranica, 20(2), 231–241. https://doi.org/10.1016/j.scient.2012.11.012

Bal, İ. E., Gülay, F. G., & Tezcan, S. S. (2008). A New Approach for the Preliminary Seismic Assessment of RC Buildings: P25 Scoring Method.

Banazadeh, M., Ghanbari, A., & Ghanbari, R. (2017). Seismic performance assessment of steel moment-resisting frames equipped with linear and nonlinear fluid viscous dampers with the same damping ratio. Journal of Constructional Steel Research, 136(November 2016), 215–228. https://doi.org/10.1016/j.jcsr.2017.05.022

Banerjee, A. K., Pramanik, D., & Roy, R. (2016). Seismic structural fragilities: Proposals for improved methodology per spectral matching of accelerogram. Engineering Structures, 111, 538–551. https://doi.org/10.1016/j.engstruct.2016.01.002

Banon, H., Irvine, H. M., & Biggs, J. M. (1981). Seismic damage in reinforced concrete frames. Journal of the Structural Division, 107(9), 1713–1729.

Barbat, A. H., & Pujades, L. (1998). Evaluación de la vulnerabilidad y del riesgo sísmico en zonas urbanas. Aplicación a Barcelona. Calidad Siderúrgica, 1977.

Barbat, A. H., Vargas, Y. F., Pujades, L. G., & Hurtado, J. E. (2015). Evaluación probabilista del riesgo sísmico de estructuras con base en la degradación de rigidez. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería. https://doi.org/10.1016/j.rimni.2014.11.001

Barbat, A. H., Vargas, Y. F., Pujades, L. G., & Hurtado, J. E. (2016). Evaluación probabilista del riesgo sísmico de estructuras con base en la degradación de rigidez. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 32(1), 39–47. https://doi.org/10.1016/j.rimni.2014.11.001

Basaglia, A., Aprile, A., Pilla, F., & Spacone, E. (2016a). Computer-aided risk assessment at urban scale. Model definition and validation on a case study. Proceedings of ECCOMAS Congress 2016, 5977–5986.

Basaglia, A., Aprile, A., Pilla, F., & Spacone, E. (2016b). COMPUTER-AIDED RISK ASSESSMENT AT URBAN SCALE . MODEL DEFINITION AND VALIDATION ON A CASE STUDY . June, 5–10.

Batabyal, A. A. (1998). The concept of resilience: retrospect and prospect. Environment and Development Economics, 3(2), 235–239.

Batalha, N., Rodrigues, H., & Varum, H. (2019). Seismic performance of RC precast industrial buildings—learning with the past earthquakes. Innovative Infrastructure Solutions, 4(1). https://doi.org/10.1007/s41062-018-0191-y

Bazzurro, P., & Cornell, C. A. (1994). Seismic hazard analysis of nonlinear structures. I: Methodology. Journal of Structural Engineering, 120(11), 3320–3344.

Bazzurro, P., Cornell, C. A., Shome, N., & Carballo, J. E. (1998). Three Proposals for Characterizing MDOF Nonlinear Seismic Response. Journal of Structural Engineering, 124(11), 1281–1289. https://doi.org/10.1061/(asce)0733-9445(1998)124:11(1281)

Bedoya-Ruiz, D., Ortiz, G. A., Álvarez, D. A., & Hurtado, J. E. (2015). Modelo dinámico no lineal para evaluar el comportamiento sísmico de viviendas de ferrocemento. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 31(3), 139–145. https://doi.org/10.1016/j.rimni.2014.04.001

Beilic, D., Casotto, C., Nascimbene, R., Cicola, D., & Rodrigues, D. (2017). Seismic fragility curves of single storey RC precast structures by comparing different Italian codes. Earthquake and Structures, 12(3), 359–374. https://doi.org/10.12989/eas.2017.12.3.359

Belejo, A., & Bento, R. (2016). Improved Modal Pushover Analysis in seismic assessment of asymmetric plan buildings under the influence of one and two horizontal components of ground motions. Soil Dynamics and Earthquake Engineering, 87, 1–15. https://doi.org/10.1016/j.soildyn.2016.04.011

Benedetti, D., Benzoni, G., & Parisi, M. A. (1988). Seismic vulnerability and risk evaluation for old urban nuclei. Earthquake Engineering & Structural Dynamics, 16(2), 183–201.

Benedetti, D., & Petrini, V. (1984). On seismic vulnerability of masonry buildings: proposal of an evaluation procedure. L’industria Delle Costruzioni, 18(149), 66–78.

Bernardini, A., Giovinazzi, S., Lagomarsino, S., & Parodi, S. (2007a). Vulnerabilità e previsione di danno a scala territoriale secondo una metodologia macrosismica coerente con la scala EMS-98. ANIDIS, XII Convegno Nazionale l’ingegneria Sismica in Italia, 10 a 14 Giugno, Pisa, November 2015. http://ir.canterbury.ac.nz/handle/10092/4060

Bernardini, A., Giovinazzi, S., Lagomarsino, S., & Parodi, S. (2007b). Vulnerabilità e previsione di danno a scala territoriale secondo una metodologia macrosismica coerente con la scala EMS-98.

Bertero, V. V. (1977). Strength and deformation capacities of buildings under extreme environments. Structural Engineering and Structural Mechanics, 53(1), 29–79.

Bilgin, H. (2013). Fragility-based assessment of public buildings in Turkey. Engineering Structures, 56, 1283–1294. https://doi.org/10.1016/j.engstruct.2013.07.002

Billah, A., & Alam, M. S. (2015). Seismic fragility assessment of highway bridges: a state-of-the-art review. Struct Infrastruct Eng 11: 804–832.

Biondini, F., Camnasio, E., & Titi, A. (2015). Seismic resilience of concrete structures under corrosion. Earthquake Engineering & Structural Dynamics, 44(14), 2445–2466.

Bommer, J. J., & Boore, D. M. (2004). Engineering seismology. Encyclopaedia of Geology, 499–514.

Bonett Díaz, R. L. (2003). Vulnerabilidad y riesgo sísmico de edificios. Aplicación a entornos urbanos en zonas de amenaza alta y moderada. Universitat Politècnica de Catalunya. http://www.tdx.cat/handle/10803/6230

Borzi, B., Crowley, H., & Pinho, R. (2008). Simplified pushover-based earthquake loss assessment (SP-BELA) method for masonry buildings. International Journal of Architectural Heritage, 2(4), 353–376.

Bozorgnia, Y., & Bertero, V. V. (2004). Earthquake engineering: from engineering seismology to performance-based engineering. CRC press.

Bracci, J. M., Reinhorn, A. M., Mander, J. B., & Kunnath, S. K. (1989). Deterministic model for seismic damage evaluation of RC structures. Rep. NCEER-89, 33.

Bramerini, F., Di Pasquale, G., Orsini, A., Pugliese, A., Romeo, R., & Sabetta, F. (1995). Rischio sismico del territorio italiano. Proposta per una metodologia e risultati preliminari. Rapporto tecnico del Servizio Sismico Nazionale SSN. SSN/RT/95/01, Roma (in Italian).

Brozovič, M., & Dolšek, M. (2014). Envelope‐based pushover analysis procedure for the approximate seismic response analysis of buildings. Earthquake Engineering & Structural Dynamics, 43(1), 77–96.

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003a). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra, 19(4), 733–752.

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003b). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. In Earthquake Spectra (Vol. 19, Issue 4, pp. 733–752). https://doi.org/10.1193/1.1623497

Bruneau, M., Eeri, M., Chang, S. E., Eeri, M., Ronald, T., Eeri, M., Lee, G. C., Eeri, M., Rourke, T. D. O., Eeri, M., Reinhorn, A. M., Eeri, M., Shinozuka, M., Eeri, M., Wallace, W. A., & Winterfeldt, D. Von. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. 19(4), 733–752. https://doi.org/10.1193/1.1623497

Bruneau, M., & Reinhorn, A. (2007). Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 23(1), 41–62.

Calvi, G. (1997). Un metodo agli spostamenti per la valutazione della vulnerabilità di classi di edifici. Atti Dell’8° Convegno Nazionale" L’Ingegneria Sismica in Italia", 1317–1327.

Calvi, G. M. (1999). A displacement-based approach for vulnerability evaluation of classes of buildings. Journal of Earthquake Engineering, 3(03), 411–438.

Calvi, G. M., Kingsley, G. R., & Magenes, G. (1996). Testing of masonry structures for seismic assessment. Earthquake Spectra, 12(1), 145–162.

Calvi, G. M., Pinho, R., Magenes, G., Bommer, J. J., Restrepo-Vélez, L. F., & Crowley, H. (2006). Development of seismic vulnerability assessment methodologies over the past 30 years. ISET Journal of Earthquake Technology, 43(3), 75–104.

Cardona, O. D., Hurtado, J. E., Duque, G., Moreno, A., Chardon, A. C., Velasquez, L. S., & Prieto, S. D. (2003). The notions of disaster risk: conceptual framework for integrated management. Information and Indicators Program for Disaster Risk Management. Inter-American Development Bank, Manizales.

Cardona, O. D., Ordaz, M. G., Mora, M. G., Salgado-Gálvez, M. A., Bernal, G. A., Zuloaga-Romero, D., Marulanda Fraume, M. C., Yamín, L., & González, D. (2014). Global risk assessment: A fully probabilistic seismic and tropical cyclone wind risk assessment. International Journal of Disaster Risk Reduction, 10(PB), 461–476. https://doi.org/10.1016/j.ijdrr.2014.05.006

Casotto, C., Silva, V., Crowley, H., Nascimbene, R., & Pinho, R. (2015). Seismic fragility of Italian RC precast industrial structures. Engineering Structures, 94, 122–136. https://doi.org/10.1016/j.engstruct.2015.02.034

Caverzan, A., & Solomos, G. (2014). Review on resilience in literature and standards for critical built-infrastructure. EC JRC, 90900.

Ceran, H. B. (2010). Seismic vulnerability of masonry structures in Turkey.

Cheung, M., Foo, S., & Granadino, J. (2000). Seismic retrofit of existing buildings: innovative alternatives. Public Works and Government …, 1–10. http://www.ironwarrior.org/ARE/Lateral_Forces/Cheung-M Seismic Retrofits.pdf

Chieffo, N., Mosoarca, M., Formisano, A., & Apostol, I. (2019). Seismic vulnerability assessment and loss estimation of an urban district of Timisoara. IOP Conference Series: Materials Science and Engineering, 471(10), 102070.

Choi, E., DesRoches, R., & Nielson, B. (2004). Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 26(2), 187–199.

Chopra, A. K., & Chintanapakdee, C. (2004). Evaluation of modal and FEMA pushover analyses: Vertically “regular” and irregular generic frames. Earthquake Spectra, 20(1), 255–271.

Chopra, A. K., & Goel, R. K. (2002). A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering and Structural Dynamics, 31(3), 561–582. https://doi.org/10.1002/eqe.144

Chung, Y. S., Meyer, C., & Shinozuka, M. (1988). SARCF User’s Guide: Seismic Analysis of Reinforced Concrete Frames. National Center for Earthquake Engineering Research.

Cimellaro, G. P. (2007). Improving seismic resilience of structural systems through integrated design of smart structures. State University of New York at Buffalo.

Cimellaro, G. P., Reinhorn, A., & Bruneau, M. (2008). Quantification of Seismic Resilience of Health care facilities.

Cimellaro, G. P., Reinhorn, A. M., & Bruneau, M. (2010). Seismic resilience of a hospital system. Structure and Infrastructure Engineering, 6(1–2), 127–144. https://doi.org/10.1080/15732470802663847

Cimellaro, G. P., Reinhorn, A. M., & M. Bruneau. (2006). QUANTIFICATION OF SEISMIC RESILIENCE G. P. CIMELLARO 1 A. M. REINHORN 2 and M. BRUNEAU 3. Engineering, 1094, 10.

Cimellaro, P. G., Reinhorn, A. M., & Bruneau, M. (2010a). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. https://doi.org/10.1016/j.engstruct.2010.08.008

Cimellaro, P. G., Reinhorn, A. M., & Bruneau, M. (2010b). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. https://doi.org/10.1016/j.engstruct.2010.08.008

Colapietro, D., Netti, A., Fiore, A., Fatiguso, F., & Marano, G. C. (2014). interventions in r . c . buildings by non-linear static and incremental dynamic analyses. 8(January 2014), 216–222.

Comfort, L. K. (2007). Shared risk: Complex systems in seismic response. Emerald Group Publishing.

Commission, E. U. (2006). Communication from the commission on a european programme for critical infrastructure protection. COM (2006), 786.

Córdova, M., & Monsalve, C. (2013). Niveles de investigación: Predictiva, proyectiva, interactiva, confirmatoria y evaluativa.

Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Management Agency Steel Moment Frame Guidelines. Journal of Structural Engineering, 128(April 2002), 526–533. htttp://www.ascelibrary.org

Corotis, R. B. (2011). Conceptual and analytical differences between resiliency and reliability for seismic hazards. Structures Congress 2011 - Proceedings of the 2011 Structures Congress, 2010–2020. https://doi.org/10.1061/41171(401)175

Council, A. T. (1985). Earthquake damage evaluation data for California. Applied Technology Council.

Council, A. T. (2009). Quantification of building seismic performance factors. US Department of Homeland Security, FEMA.

Culture, M. D. E. L. A., Et, S., & Recherche, D. E. L. A. (2019). SUPERIEUR ET DE LA RECHERCHE CONSEIL DE L ’ EUROPE Cahiers du Centre Européen de Géodynamique et de Séismologie Volume 32 Scala Macrosismica Europea 1998 European Macroseismic Scale 1998 Scala Macrosismica Europea 1998. 15, 101. http://lib.riskreductionafrica.org/bitstream/handle/123456789/1193/1281.European Macroseismic Scale 1998.pdf?sequence=1

D’Amico, M., & Buratti, N. (2019). Observational seismic fragility curves for steel cylindrical tanks. Journal of Pressure Vessel Technology, 141(1).

D’Ayala, D., Meslem, A., Vamvatsikos, D., Porter, K., Rossetto, T., Crowley, H., & Silva, V. (2013). Guidelines for Analytical Vulnerability Assessment - Low/Mid-Rise. GEM Technical Report, 08, 162. https://doi.org/10.13117/GEM.VULN-MOD.TR2014.12

Dabaghi, M., Saad, G., & Allhassania, N. (2019). Seismic collapse fragility analysis of reinforced concrete shear wall buildings. Earthquake Spectra, 35(1), 383–404.

Daniell, J. E., & Vervaeck, A. (2011). The CATDAT Damaging Earthquakes Database–2010–Year in Review. CEDIM Earthquake Loss Estimation Series, 2001–2011.

Decò, A., Bocchini, P., & Frangopol, D. M. (2013). A probabilistic approach for the prediction of seismic resilience of bridges. Earthquake Engineering & Structural Dynamics, 42(10), 1469–1487.

Del Gaudio, C., Ricci, P., Verderame, G. M., & Manfredi, G. (2015). Development and urban-scale application of a simplified method for seismic fragility assessment of RC buildings. Engineering Structures, 91, 40–57. https://doi.org/10.1016/j.engstruct.2015.01.031

DiPasquale, E., & Cakmak, A. S. (1988). Identification of the serviceability limit state and detection of seismic structural damage. National Center for Earthquake Engineering Research New York, NY, USA.

Dolce, M., Marino, M., Masi, A., & Vona, M. (2000). Seismic vulnerability analysis and damage scenarios of Potenza. International Workshop on Seismic Risk and Earthquake Scenarios of Potenza, 13.

Dumova-Jovanoska, E. (2000). Fragility curves for reinforced concrete structures in Skopje (Macedonia) region. Soil Dynamics and Earthquake Engineering, 19(6), 455–466.

Dumova Jovanoska, E. (2000). Fragility curves for reinforced concrete structures in Skopje (Macedonia) region. Soil Dynamics and Earthquake Engineering, 19(6), 455–466.

Eleftheriadou, A. K., Baltzopoulou, A. D., & Karabinis, A. I. (2014). Seismic Risk Assessment of Buildings in the Extended Urban Region of Athens and Comparison with the Repair Cost. Open Journal of Earthquake Research, 3(August), 115–134. https://doi.org/10.4236/ojer.2014.33012

Engineering, N. Z. S. for E. (2014). Assessment and Improvement of the Structural Performance of Buildings in Earthquakes: Prioritisation, Initial Evaluation, Detailed Assessment, Improvement Measures: Recommendations of a NZSEE Study Group on Earthquake Risk Buildings. New Zealand Society for Earthquake Engineering.

Faccioli, E., Pessina, V., Calvi, G. M., & Borzi, B. (1999). A study on damage scenarios for residential buildings in Catania city. Journal of Seismology, 3(3), 327–343.

Fajfar, P. (1999). Capacity spectrum method based on inelastic demand spectra. Earthquake Engineering and Structural Dynamics, 28(9), 979–993. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1

Fajfar, P. (2004). PERFORMANCE-BASED SEISMIC DESIGN CONCEPTS AND IMPLEMENTATION. PROCEEDINGS OF THE INTERNATIONAL WORKSHOP, 550.

Fajfar, P., & Krawinkler, H. (2004). PERFORMANCE-BASED SEISMIC DESIGN CONCEPTS AND IMPLEMENTATION.

Fanaie, N., & Ezzatshoar, S. (2014). Studying the seismic behavior of gate braced frames by incremental dynamic analysis ( IDA ). JCSR, 99, 111–120. https://doi.org/10.1016/j.jcsr.2014.04.008

Fardis, M. N., Papailia, A., & Tsionis, G. (2012). Seismic fragility of RC framed and wall-frame buildings designed to the EN-Eurocodes. Bulletin of Earthquake Engineering, 10(6), 1767–1793.

Farsangi, E. N., Rezvani, F. H., & Talebi, M. (2014). Seismic Risk Analysis of Steel-MRFs by Means of Fragility Curves in High Seismic Zones. September. https://doi.org/10.1260/1369-4332.17.9.1227

Farsangi, E. N., & Tasnimi, A. A. (2016). The influence of coupled horizontal–vertical ground excitations on the collapse margins of modern RC-MRFs. International Journal of Advanced Structural Engineering (IJASE), 8(2), 169–192.

Farsangi, E. N., Yang, T. Y., & Tasnimi, A. A. (2016). Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings. Structural Engineering and Mechanics, 59(4), 653–669.

Fathieh, A., & Mercan, O. (2016). Seismic evaluation of modular steel buildings. Engineering Structures, 122, 83–92. https://doi.org/10.1016/j.engstruct.2016.04.054

FEMA. (2008). Multi-hazard Loss Estimation Methodology Earthquake: Hazus -MH MR5. Department of Homeland Security Federal Emergency Management Agency.

FEMA. (2009). Multihazard Loss Estimation Methodology Earthquake Model HAZUS. Federal Emergency Management Agency, 718.

FEMA. (2012). Next-Generation Methodology for Seismic Performance Assessment of Buildings. Report No. FEMA P-58. Prepared by the Applied Technology Council (ATC) for the Federal Emergency Management Agency.

FEMA, & ASCE. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings. FEMA (Series). Federal Emergency Management Agency. Washington, DC.

FEMA, F. E. M. A. (1997). NEHRP Guidelines for the Seismic Rehabilitation of Buildings (FEMA‐273).

FEMA, H. (2003). Multi-hazard loss estimation methodology, earthquake model. Washington, DC, USA: Federal Emergency Management Agency.

FEMA, P. (2000). commentary for the seismic rehabilitation of buildings (FEMA356). Washington, DC: Federal Emergency Management Agency, 7.

FEMA, P. (2015). 154: Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook. Federal Emergency Management Agency Report, FEMA. P, 154.

Feng, M. Q., Member, A., Kim, H., & Kim, S. (2000). N s p f c d. December, 1287–1295.

Ferreira, T. M., Maio, R., & Vicente, R. (2017a). Seismic vulnerability assessment of the old city centre of Horta, Azores: calibration and application of a seismic vulnerability index method. Bulletin of Earthquake Engineering, 15(7), 2879–2899. https://doi.org/10.1007/s10518-016-0071-9

Ferreira, T. M., Maio, R., & Vicente, R. (2017b). Seismic vulnerability assessment of the old city centre of Horta, Azores: calibration and application of a seismic vulnerability index method. Bulletin of Earthquake Engineering, 15(7), 2879–2899.

Finn, W. D. L. (2000). State-of-the-art of geotechnical earthquake engineering practice. Soil Dynamics and Earthquake Engineering, 20(1–4), 1–15. https://doi.org/10.1016/S0267-7261(00)00033-6

Fiore, A., Spagnoletti, G., & Greco, R. (2016). On the prediction of shear brittle collapse mechanisms due to the infill-frame interaction in RC buildings under pushover analysis. Engineering Structures, 121, 147–159. https://doi.org/10.1016/j.engstruct.2016.04.044

Fragiadakis, M., & Vamvatsikos, D. (2010). Fast performance uncertainty estimation via pushover and approximate IDA. Earthquake Engineering and Structural Dynamics, 39(6), 683–703. https://doi.org/10.1002/eqe.965

Frangopol, D. M., & Curley, J. P. (1987). Effects of damage and redundancy on structural reliability. Journal of Structural Engineering, 113(7), 1533–1549.

Freeman, S. A. (1978). Prediction of response of concrete buildings to severe earthquake motion. Special Publication, 55, 589–606.

Garrido, R. D. U. (2015). Vulnerabilidad sísmica en edificaciones porticadas compuestas de acero y hormigón armado. UNIVERSITAT POLITECNICA DE CATALUNYA.

Giovinazzi, S., & Lagomarsino, S. (2002). A methodology for the vulnerability analysis of built-up areas. Proceedings of the International Conference on Earthquake Loss Estimation and Risk Reduction, Bucharest, DVD-Rom.

Giovinazzi, S., & Lagomarsino, S. (2004). A macroseismic method for the vulnerability assessment of buildings. 13th World Conference on Earthquake Engineering, 896, 1–6.

Glaister, S., & Pinho, R. (2003). Development of a simplified deformation-based method for seismic vulnerability assessment. Journal of Earthquake Engineering, 7(December 2014), 107–140. https://doi.org/10.1080/13632460309350475

Goel, R. K., & Chopra, A. K. (2004a). Evaluation of modal and FEMA pushover analyses: SAC buildings. Earthquake Spectra, 20(1), 225–254.

Goel, R. K., & Chopra, A. K. (2004b). Evaluation of Modal and FEMA Pushover Analyses: SAC Buildings. In Earthquake Spectra (Vol. 20, Issue 1, pp. 225–254). https://doi.org/10.1193/1.1646390

Gonzalez-Drigo, R., Avila-Haro, J., Pujades, L. G., & Barbat, A. H. (2017). Non-linear static procedures applied to high-rise residential URM buildings. Bulletin of Earthquake Engineering, 15(1), 149–174.

Gonzalez, J. L., Roca, P., & Centro Internacional de Metodos Numericos en Ingenieria-CIMNE, B. (Spain); (1998). Structural analysis of historical construction 2. Possibilities of numerical and experimental techniques.

González, V., Alarcón, L. F., Maturana, S., Mundaca, F., & Bustamante, J. (2010). Improving Planning Reliability and Project Performance Using the Reliable Commitment Model. Journal of Construction Engineering and Management, 136(10), 1129–1139. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000215

Gribaudo, M., Iacono, M., & Kiran, M. (2018). A performance modeling framework for lambda architecture based applications. Future Generation Computer Systems, 86, 1032–1041.

Guagenti, E., & Petrini, V. (1989). Il caso delle vecchie costruzioni: verso una nuova legge danni-intensità. Proceedings of the 4th Italian National Conference on Earthquake Engineering, 1, 145–153.

Gupta, A., & Krawinkler, H. (1999). Seismic demands for the performance evaluation of steel moment resisting frame structures. Stanford University.

Gupta, B., & Kunnath, S. K. (2000). Adaptive spectra‐based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 16(2), 367–392.

Hajimehrabi, H., Behnamfar, F., Samani, A. K., & Goudarzi, M. A. (2019). Fragility curves for baffled concrete cylindrical liquid-storage tanks. Soil Dynamics and Earthquake Engineering, 119(January), 187–195. https://doi.org/10.1016/j.soildyn.2019.01.015

Hancilar, U., & Caktı, E. (2015). Fragility functions for code complying RC frames via best correlated IM–EDP pairs. Bulletin of Earthquake Engineering, 13(11), 3381–3400.

Haselton, C. B., & Deierlein, G. G. (2008). Assessing Seismic Collapse Safety of Modern Reinforced Concrete Moment-Frame Buildings. In Civil Engineering (Vol. 137, Issue February). http://myweb.csuchico.edu/~chaselton/Website_Files/Publications/Pub_Dissertation_PEERReport_Haselton.pdf

Hassan, A. F., & Sozen, M. A. (1997). Seismic vulnerability assessment of low-rise buildings in regions with infrequent earthquakes. ACI Structural Journal, 94(1), 31–39.

Hasselman, T. K., Eguchi, R. T., & Wiggins, J. H. (1980). Assessment of damageability for existing buildings in a natural hazards environment. Volume 1: Methodology. Adeb, 1.

HAZUS. (1999). Earthquake Loss Estimation Methodology Earthquake (F. E. M. A. (FEMA) (ed.); Technical).

Hernández-Sampieri, R., Fernández, C., & Batista, P. (2010). Metodología de la Investigación.(5ta. Edición). México: Editorial Mc Graw Hill. Campos, W.(2010). Apuntes de Metodología de La Investigación Científica.

Holling, C. S., Schindler, D. W., Walker, B. W., & Roughgarden, J. (1995). Biodiversity in the functioning of ecosystems: an ecological synthesis. Biodiversity Loss: Economic and Ecological Issues, 44, 83.

Holmes, W. T. (2010). Progress of Seismic Rehabilitation of Buildings in the US. In Improving the Seismic Performance of Existing Buildings and Other Structures (pp. 17–31).

Home III, J. F., & Orr, J. E. (1997). Assessing behaviors that create resilient organizations. Employment Relations Today, 24(4), 29–39.

Hosseinzadeh, S., & Galal, K. (2020). System-level seismic resilience assessment of reinforced masonry shear wall buildings with masonry boundary elements. Structures, 26(December 2019), 686–702. https://doi.org/10.1016/j.istruc.2020.04.050

Hoult, R., Goldsworthy, H., & Lumantarna, E. (2019). Fragility functions for RC shear wall buildings in Australia. Earthquake Spectra, 35(1), 333–360.

Hwang, H. H. M., & Huo, J. R. (1994). Generation of hazard-consistent fragility curves for seismic loss estimation studies. In Technical Report NCEER (Vol. 94). US National Center for Earthquake Engineering Research.

Ibrahim, Y. E., & El-Shami, M. M. (2011). Seismic fragility curves for mid-rise reinforced concrete frames in Kingdom of Saudi Arabia. The IES Journal Part A: Civil & Structural Engineering, 4(4), 213–223.

Jalayer, F., De Risi, R., & Manfredi, G. (2015). Bayesian Cloud Analysis: Efficient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering, 13(4), 1183–1203. https://doi.org/10.1007/s10518-014-9692-z

Jan, T. S., Liu, M. W., & Kao, Y. C. (2004). An upper-bound pushover analysis procedure for estimating the seismic demands of high-rise buildings. Engineering Structures, 26(1), 117–128. https://doi.org/10.1016/j.engstruct.2003.09.003

Johnson, J. L., & Wiechelt, S. A. (2004). Introduction to the special issue on resilience. Substance Use & Misuse, 39(5), 657–670.

Joyner, M. D., & Sasani, M. (2020). Building performance for earthquake resilience. Engineering Structures, 210(April 2019), 110371. https://doi.org/10.1016/j.engstruct.2020.110371

Kalkan, E., & Kunnath, S. K. (2006). Adaptive Modal Combination Procedure for Nonlinear Static Analysis of Building Structures. Journal of Structural Engineering, 132(11), 1721–1731. https://doi.org/10.1061/(asce)0733-9445(2006)132:11(1721)

Kaplan, H. B. (2002). Toward an understanding of resilience. In Resilience and development (pp. 17–83). Springer.

Karantoni, F., Tsionis, G., Lyrantzaki, F., & Fardis, M. N. (2014). Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure. Earthquakes and Structures, 6(6), 689–713.

Karapetrou, S. T., Fotopoulou, S. D., & Pitilakis, K. D. (2017). Seismic Vulnerability of RC Buildings under the Effect of Aging. Procedia Environmental Sciences, 38, 461–468. https://doi.org/10.1016/j.proenv.2017.03.137

Kassem, M. M., Mohamed Nazri, F., & Noroozinejad Farsangi, E. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. In Ain Shams Engineering Journal (Issue xxxx). THE AUTHORS. https://doi.org/10.1016/j.asej.2020.04.001

Kassem, M. M., Nazri, F. M., & Farsangi, E. N. (2020). The seismic vulnerability assessment methodologies: A state-of-the-art review. Ain Shams Engineering Journal.

Kendra, J. M., & Wachtendorf, T. (2003). Elements of resilience after the world trade center disaster: reconstituting New York City’s Emergency Operations Centre. Disasters, 27(1), 37–53.

Khoshnoudian, F., & Kiani, M. (2012). Modified consecutive modal pushover procedure for seismic investigation of one-way asymmetric-plan tall buildings. Journal of Earthquake Engineering and Engineering Vibration, 11(2), 221–232. https://doi.org/10.1007/s11803-012-0112-6

Kildashti, K., Mirzadeh, N., & Samali, B. (2018). Thin-Walled Structures Seismic vulnerability assessment of a case study anchored liquid storage tank by considering fi xed and fl exible base restraints. Thin Walled Structures, 123(October 2017), 382–394. https://doi.org/10.1016/j.tws.2017.11.041

Kiran, M., Murphy, P., Monga, I., Dugan, J., & Baveja, S. S. (2015). Lambda architecture for cost-effective batch and speed big data processing. 2015 IEEE International Conference on Big Data (Big Data), 2785–2792.

Kircher, C. A., Nassar, A. A., Kustu, O., & Holmes, W. T. (1997). Development of building damage functions for earthquake loss estimation. Earthquake Spectra, 13(4), 663–682.

Kirçil, M. S., & Polat, Z. (2006). Fragility analysis of mid-rise R/C frame buildings. Engineering Structures, 28(9), 1335–1345.

Klein, R. J. T., Nicholls, R. J., & Thomalla, F. (2003). Resilience to natural hazards: How useful is this concept? Environmental Hazards, 5(1), 35–45. https://doi.org/10.1016/j.hazards.2004.02.001

ATC-20-3 Case Studies in Rapid Postearthquake Safety Evaluation of Buildings ATC-20-3 Case Studies in Rapid Postearthquake Safety Evaluation of Buildings, (2015). https://www.researchgate.net/publication/268058748%0AATC-20-3

Kramer, S. L. (1996). Geotechnical Earthquake Engineering (Pearson Ed). Englewood Cliffs.

Krawinkler, H. (2002). A general approach to seismic performance assessment. Proceedings, International Conference on Advances and New Challenges in Earthquake Engineering Research, 19–20.

Krawinkler, H., Medina, R., & Alavi, B. (2003). Seismic drift and ductility demands and their dependence on ground motions. Engineering Structures, 25(5), 637–653. https://doi.org/10.1016/S0141-0296(02)00174-8

Krawinkler, H., & Seneviratna, G. D. P. K. (1998). Pros and cons of a pushover analysis of seismic performance evaluation. Engineering Structures, 20(4–6), 452–464. https://doi.org/10.1016/S0141-0296(97)00092-8

Kreslin, M., & Fajfar, P. (2012). The extended N2 method considering higher mode effects in both plan and elevation. Bulletin of Earthquake Engineering, 10(2), 695–715.

Kroß, J., Brunnert, A., Prehofer, C., Runkler, T. A., & Krcmar, H. (2015a). Stream processing on demand for lambda architectures. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9272, 243–257. https://doi.org/10.1007/978-3-319-23267-6_16

Kroß, J., Brunnert, A., Prehofer, C., Runkler, T. A., & Krcmar, H. (2015b). Stream processing on demand for lambda architectures. European Workshop on Performance Engineering, 243–257.

Kunnath, S. K., Reinhorn, A. M., & Lobo, R. F. (1992). IDARC Version 3.0: A program for the inelastic damage analysis of reinforced concrete structures. National Center for Earthquake Engineering Research Buffalo, NY.

Lagaros, N. D., & Fragiadakis, M. (2011). Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings. Soil Dynamics and Earthquake Engineering, 31(1), 77–90. https://doi.org/10.1016/j.soildyn.2010.08.007

Lagomarsino, S., & Giovinazzi, S. (2006). Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bulletin of Earthquake Engineering, 4(4), 415–443. https://doi.org/10.1007/s10518-006-9024-z

Lantada, N., Irizarry, J., Barbat, A. H., Goula, X., Roca, A., Susagna, T., & Pujades, L. G. (2010a). Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bulletin of Earthquake Engineering, 8(2), 201–229. https://doi.org/10.1007/s10518-009-9148-z

Lantada, N., Irizarry, J., Barbat, A. H., Goula, X., Roca, A., Susagna, T., & Pujades, L. G. (2010b). Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bulletin of Earthquake Engineering, 8(2), 201–229.

Latina, E. de R. N. A. (2009). ERN-AL. Informe Técnico ERN-CAPRA-T1-5. Vulnerabilidad de Edificaciones e Infraestructura.

Lee, J. H., Kim, J. H., & Kim, J. K. (2016). Perfectly matched discrete layers for three-dimensional nonlinear soil-structure interaction analysis. Computers and Structures, 165, 34–47. https://doi.org/10.1016/j.compstruc.2015.12.004

Lee, K., & Foutch, D. A. (2002). Seismic performance evaluation of pre-Northridge steel frame buildings with brittle connections. Journal of Structural Engineering, 128(4), 546–555.

Lin, T., & Baker, J. W. (2013). Introducing adaptive incremental dynamic analysis: A new tool for linking ground motion selection and structural response assessment. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures - Proceedings of the 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013, Icossar, 805–811.

Liu, Y., & Kuang, J. S. (2017). Spectrum-based pushover analysis for estimating seismic demand of tall buildings. Bulletin of Earthquake Engineering, 15(10), 4193–4214.

Long, X. H., Xie, Z. Y., Fan, J., & Miao, Y. (2018). Convex model-based calculation of robust seismic fragility curves of isolated continuous girder bridge. Bulletin of Earthquake Engineering, 16(1), 155–182.

Lovon, H., Tarque, N., Silva, V., & Yepes-Estrada, C. (2018). Development of fragility curves for confined masonry buildings in Lima, Peru. Earthquake Spectra, 34(3), 1339–1361.

Lu, X., McKenna, F., Cheng, Q., Xu, Z., Zeng, X., & Mahin, S. A. (2020). An open-source framework for regional earthquake loss estimation using the city-scale nonlinear time history analysis. Earthquake Spectra, 8755293019891724.

Lu, Y., Hajirasouliha, I., & Marshall, A. M. (2016). Performance-based seismic design of flexible-base multi-storey buildings considering soil-structure interaction. Engineering Structures, 108, 90–103. https://doi.org/10.1016/j.engstruct.2015.11.031

Mahini, S. S., Hadigheh, S. A., & Setunge, S. (2016). Seismic resilience of retrofitted reinforced concrete buildings. November, 222–230. https://doi.org/10.14264/uql.2016.870

Maio, R., Ferreira, T. M., Vicente, R., & Estêvão, J. (2016). Seismic vulnerability assessment of historical urban centres: Case study of the old city centre of Faro, Portugal. Journal of Risk Research, 19(5), 551–580. https://doi.org/10.1080/13669877.2014.988285

Maio, R., Vicente, R., Formisano, A., & Varum, H. (2015). Seismic vulnerability of building aggregates through hybrid and indirect assessment techniques. Bulletin of Earthquake Engineering, 13(10), 2995–3014. https://doi.org/10.1007/s10518-015-9747-9

Maison, B., & McDonald, B. (2018). Fragility curves for residential masonry chimneys. Earthquake Spectra, 34(3), 1001–1023.

Mallak, L. A. (1998). Measuring resilience in health care provider organizations. Health Manpower Management.

Manyena, S. B. (2006). The concept of resilience revisited. Disasters, 30(4), 434–450.

Martínez, A. V., Unanue, R. M., & Yuste, Á. R. (2015). Arquitectura lambda aplicada a clustering de documentos en contextos Big Data.

Masi, A., & Vona, M. (2012). Vulnerability assessment of gravity-load designed RC buildings: Evaluation of seismic capacity through non-linear dynamic analyses. Engineering Structures, 45, 257–269. https://doi.org/10.1016/j.engstruct.2012.06.043

McCrum, D. P., Amato, G., & Suhail, R. (2016). Development of seismic fragility functions for a moment resisting reinforced concrete framed structure. The Open Construction & Building Technology Journal, 10(1).

McEntire, D. A., Fuller, C., Johnston, C. W., & Weber, R. (2002). A comparison of disaster paradigms: The search for a holistic policy guide. Public Administration Review, 62(3), 267–281.

Meade, C., & Kulick, J. (2007). SB1953 and the challenge of hospital seismic safety in California. California HealthCare Foundation Oakland.

Medina, A. B. C. (2014). Investigación holística y Desarrollo Instruccional en la comprensión del discurso escrito en estudiantes de educación media de la UEN José Félix Blanco. Caracas. Revista de Investigación, 38(81), 69–88.

Meslem, A., Vamvatsikos, D., Porter, K., & Rossetto, T. (2015). Guidelines for Analytical Vulnerability Assessment of Low / Mid-Rise Buildings. FEBRUARY.

Mileti, D. (1999). Disasters by design: A reassessment of natural hazards in the United States. Joseph Henry Press.

Milutinovic, Z. V, & Trendafiloski, G. S. (2003). Risk-UE An advanced approach to earthquake risk scenarios with applications to different european towns. Contract: EVK4-CT-2000-00014, WP4: Vulnerability of Current Buildings, 1–111.

Miranda, E. (1999). Approximate seismic lateral deformation demands in multistory buildings. Journal of Structural Engineering, 125(4), 417–425.

Miranda, E. (2001). Estimation of inelastic deformation demands of SDOF systems. Journal of Structural Engineering, 127(9), 1005–1012.

Moazam, A. M., Hasani, N., & Yazdani, M. (2018). Incremental dynamic analysis of small to medium spans plain concrete arch bridges. Engineering Failure Analysis, 91, 12–27.

Montanaro, M. I. (2002). Sistemas de control de vibraciones en estructuras de gran altura. Vibration Control System in Very High Structures., 53(477), 31–39. http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/640/722

Moreno González, R. (2006). Evaluación del riesgo sísmico en edificios mediante análisis estático no lineal: Aplicación a diversos escenarios sísmicos de Barcelona [Universitat Politècnica de Catalunya]. In TDX (Tesis Doctorals en Xarxa). https://upcommons.upc.edu/handle/2117/93559#.X3j0e05cgQc.mendeley

Moreno, R., Pujades, L., Aparicio, A. C., & Barbat, A. H. (2007). Herramientas necesarias para la evaluación sísmica de edificios. Monografías de Ingeniería Sísmica, October, 112. https://doi.org/10.13140/2.1.1030.6881

Moretti, S., Trozzo, A., Terzic, V., Cimellaro, G. P., & Mahin, S. (2014). Utilizing Base-isolation Systems to Increase Earthquake Resiliency of Healthcare and School Buildings. Procedia Economics and Finance, 18(September), 969–976. https://doi.org/10.1016/s2212-5671(14)01024-7

Mosoarca, M., Onescu, I., Onescu, E., Azap, B., & Chie, N. (2019). Seismic vulnerability assessment for the historical areas of the Timisoara city , Romania. 101(March), 86–112. https://doi.org/10.1016/j.engfailanal.2019.03.013

Nazari, Y. R., & Saatcioglu, M. (2017). Seismic vulnerability assessment of concrete shear wall buildings through fragility analysis. Journal of Building Engineering, 12, 202–209. https://doi.org/10.1016/j.jobe.2017.06.006

Nazri, F. M., & Curves, F. F. (2018). Seismic fragility assessment for buildings due to earthquake excitation. Springer.

Nazri, F. M., Miari, M. A., Kassem, M. M., Tan, C.-G., & Farsangi, E. N. (2019). Probabilistic evaluation of structural pounding between adjacent buildings subjected to repeated seismic excitations. Arabian Journal for Science and Engineering, 44(5), 4931–4945.

Nazri, F. M., & Saruddin, S. N. A. (2015). Seismic fragility curves for steel and reinforced concrete frames based on near-field and far-field ground motion records. Arabian Journal for Science and Engineering, 40(8), 2301–2307.

Negulescu, C., Baills, A., Survey, F. G., & Seyedi, D. (2014). Fragility curves for masonry structures submitted to permanent ground displacements and earthquakes. Nat Hazards, January 2018. https://doi.org/10.1007/s11069-014-1253-x

Negulescu, C., Ulrich, T., Baills, A., & Seyedi, D. M. (2014). Fragility curves for masonry structures submitted to permanent ground displacements and earthquakes. Natural Hazards, 74(3), 1461–1474.

Ning, X., Qi, J., Wu, C., & Wang, W. (2019). Reducing noise pollution by planning construction site layout via a multi-objective optimization model. Journal of Cleaner Production, 222, 218–230. https://doi.org/10.1016/j.jclepro.2019.03.018

Nur, S., Saruddin, A., & Mohamed, F. (2015). Fragility curves for low- and mid-rise buildings in Malaysia. Procedia Engineering, 125, 873–878. https://doi.org/10.1016/j.proeng.2015.11.056

Ordaz, M., Aguilar, A., & Arboleda, J. (2007). CRISIS, Program for computing seismic hazard. Instituto de Ingeniería. Universidad Nacional Autónoma de México.

Ordaz, M. G., Salgado-Gálvez, M. A., Cardona, O. D., & Contreras, M. (2019). R-CRISIS: 30 años de desarrollos y mejorías continuas encaminadas a una mejor evaluación probabilista del peligro sísmico. Congreso Nacional de Ingeniería Sísmicas, May.

Ordaz, M., & Montoya, C. (2013). Programa de cómputo DEGTRA, V9. 3. Instituto de Ingeniería. Universidad Nacional Autónoma de México.

Oropeza, M., Michel, C., Bigler, M., & Lestuzzi, P. (2010). New analytical fragility curves for existing URM buildings in regions with moderate seismicity. 8th International Masonry Conference, February 2016, 1491–1499.

Ortega, J., Vasconcelos, G., Rodrigues, H., & Correia, M. (2019). A vulnerability index formulation for the seismic vulnerability assessment of vernacular architecture. Engineering Structures, 197(July), 109381. https://doi.org/10.1016/j.engstruct.2019.109381

Ortega, J., Vasconcelos, G., Rodrigues, H., Correia, M., Ferreira, T. M., & Vicente, R. (2019). Use of post-earthquake damage data to calibrate, validate and compare two seismic vulnerability assessment methods for vernacular architecture. International Journal of Disaster Risk Reduction, 39, 101242.

Otani, S. (2000). Seismic Vulnerability Assessment Methods for Buildings in Japan. Earthquake Engineering and Engineering Seismology, 2(2), 47–56.

Özel, A. E., & Güneyisi, E. M. (2011). Effects of eccentric steel bracing systems on seismic fragility curves of mid-rise R/C buildings: A case study. Structural Safety, 33(1), 82–95. https://doi.org/10.1016/j.strusafe.2010.09.001

Ozmen, H. B., Inel, M., Meral, E., & Bucakli, M. (2010). Vulnerability of Low and Mid-Rise Reinforced Concrete Buildings In Turkey. 14Ecee, April 2016, 1998.

Pagnini, L. C., Vicente, R., Lagomarsino, S., & Varum, H. (2011). A mechanical model for the seismic vulnerability assessment of old masonry buildings. Earthquakes and Structures, 2(1), 25–42.

Palacios, S. M. (2004). State of the art in seismic vulnerability. http://rua.ua.es/dspace/handle/10045/2626

Park, Y.-J., & Ang, A. H.-S. (1985). Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, 111(4), 722–739.

Park, Y.-J., Ang, A. H.-S., & Wen, Y. K. (1985). Seismic damage analysis of reinforced concrete buildings. Journal of Structural Engineering, 111(4), 740–757.

Park, Y. J., Ang, A. H. S., & Wen, Y. K. (1987). Damage-limiting aseismic design of buildings. Earthquake Spectra, 3(1), 1–26.

Paton, D., Smith, L., & Violanti, J. (2000). Disaster response: risk, vulnerability and resilience. Disaster Prevention and Management: An International Journal.

Paulo, B. (2014). A seismic vulnerability index method for masonry schools in the province of Yazd , Iran . 9th International Masonry Conference 2014 in Guimarães, 1–12.

Peer n.d. (2020). Pacific Earthquake Engineering Research Center (PEER). https://peer.berkeley.edu/

Pejovic, J., & Jankovic, S. (2016). Seismic fragility assessment for reinforced concrete high-rise buildings in Southern Euro-Mediterranean zone. Bulletin of Earthquake Engineering, 14(1), 185–212.

Pekelnicky, R., & Poland, C. (2012). ASCE 41-13: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings. SEAOC 2012 Convention Proceedings, 1–12.

Pelling, M. (2003). The vulnerability of cities: natural disasters and social resilience. Earthscan.

Peralta Álvarez, M. G., & others. (2012). Análisis estático no lineal y análisis dinámico no lineal del Hospital de Vielha.

Perrone, D., Aiello, M. A., Pecce, M., & Rossi, F. (2015). Rapid visual screening for seismic evaluation of RC hospital buildings. Structures, 3, 57–70. https://doi.org/10.1016/j.istruc.2015.03.002

Pinto, P. E., Giannini, R., & Franchin, P. (2007). Seismic Reliability Analysis of Structures. Earthquake Engineering & Structural Dynamics, 36(13), 2081–2081. https://doi.org/10.1002/eqe.742

Pitilakis, K. (2011). Systemic seismic vulnerability and risk analysis for buildings, lifeline networks and infrastructures safety gain. Deliverable D2, 12.

Pitilakis, K., Crowley, H., & Kaynia, A. M. (2014). SYNER-G: typology definition and fragility functions for physical elements at seismic risk. Geotechnical, Geological and Earthquake Engineering, 27, 1–28.

Pnevmatikos, N. G., Papagiannopoulos, G. A., & Papavasileiou, G. S. (2019). Fragility curves for mixed concrete/steel frames subjected to seismic excitation. Soil Dynamics and Earthquake Engineering, 116(September 2018), 709–713. https://doi.org/10.1016/j.soildyn.2018.09.037

Polese, M., Verderame, G. M., Mariniello, C., Iervolino, I., & Manfredi, G. (2008). Vulnerability analysis for gravity load designed RC buildings in Naples - Italy. Journal of Earthquake Engineering, 12(SUPPL. 2), 234–245. https://doi.org/10.1080/13632460802014147

Porter, K. A., & Kiremidjian, A. S. (2000). Assembly-based vulnerability of buildings and its uses in seismic performance evaluation and risk-management decision-making. SPA Risk LLC.

Porter, K., Kennedy, R., & Bachman, R. (2007). Creating fragility functions for performance-based earthquake engineering. Earthquake Spectra, 23(2), 471–489. https://doi.org/10.1193/1.2720892

Poursha, M., Khoshnoudian, F., & Moghadam, A. S. (2009). A consecutive modal pushover procedure for estimating the seismic demands of tall buildings. Engineering Structures, 31(2), 591–599. https://doi.org/10.1016/j.engstruct.2008.10.009

Poursha, M., Khoshnoudian, F., & Moghadam, A. S. (2011). A consecutive modal pushover procedure for nonlinear static analysis of one-way unsymmetric-plan tall building structures. Engineering Structures, 33(9), 2417–2434. https://doi.org/10.1016/j.engstruct.2011.04.013

Poursha, M., & Samarin, E. T. (2015). The modified and extended upper-bound (UB) pushover method for the multi-mode pushover analysis of unsymmetric-plan tall buildings. Soil Dynamics and Earthquake Engineering, 71, 114–127. https://doi.org/10.1016/j.soildyn.2015.01.012

Pujades, L. G., & Barbat, A. H. (2011). Non-linear static procedures applied to high-rise residential URM buildings. 1, 1–28.

Quiroga, R. J. (2013). Vulnerabilidad sísmica de viviendas de mampostería simple en estratos bajos de la ciudad de Bogotá. Universidad de los Andes, Bogotá D.C., Colombia.

Rahmani, A. Y., Bourahla, N., Bento, R., & Badaoui, M. (2018). An improved upper-bound pushover procedure for seismic assessment of high-rise moment resisting steel frames. Bulletin of Earthquake Engineering, 16(1), 315–339.

Ramirez, C. M., & Miranda, E. (2012). Significance of residual drifts in building earthquake loss estimation. Earthquake Engineering & Structural Dynamics, 41(11), 1477–1493. https://doi.org/10.1002/eqe.2217

Reinhorn, A. M., Barron-Corverra, R., & Ayala, A. G. (2001a). Spectral evaluation of seismic fragility of structures. Proceedings ICOSSAR, 2001.

Reinhorn, A. M., Barron-Corverra, R., & Ayala, A. G. (2001b). Spectral evaluation of seismic fragility of structures. 8th International Conference on Structural Safety and Reliability, 2001(ICOSSAR), 1–8. http://civil.eng.buffalo.edu

Restrepo, L. (2004). Seismic risk of unreinforced masonry buildings. Ph. D. Thesis, Rose School, Universita degli Studi di Pavia, Italia.

Reyes, J. C., & Chopra, A. K. (2012). Modal pushover-based scaling of two components of ground motion records for nonlinear RHA of structures. Earthquake Spectra, 28(3), 1243–1267.

Rezaei Ranjbar, P., & Naderpour, H. (2020). Probabilistic evaluation of seismic resilience for typical vital buildings in terms of vulnerability curves. Structures, 23(August 2019), 314–323. https://doi.org/10.1016/j.istruc.2019.10.017

Rinc, I. B. (2011). Investigación científica e investigación tecnológica como componentes para la innovación: consideraciones técnicas y metodológicas. 220–255.

Rojahn, C., & Sharpe, R. L. (1985). Earthquake damage evaluation data for California. Applied technology council.

Rossetto, T., & Elnashai, A. (2003). Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering Structures, 25(10), 1241–1263. https://doi.org/10.1016/S0141-0296(03)00060-9

Rossetto, T., & Elnashai, A. (2005). A new analytical procedure for the derivation of displacement-based vulnerability curves for populations of RC structures. Engineering Structures, 27(3), 397–409. https://doi.org/10.1016/j.engstruct.2004.11.002

Rota, M., Penna, A., & Magenes, G. (2010). A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Engineering Structures, 32(5), 1312–1323. https://doi.org/10.1016/j.engstruct.2010.01.009

Roufaiel, M. S. L., & Meyer, C. (1987). Analytical modeling of hysteretic behavior of R/C frames. Journal of Structural Engineering, 113(3), 429–444.

Saatcioglu, M., Shooshtari, M., & Foo, S. (2013). Seismic screening of buildings based on the 2010 National Building Code of Canada1. Canadian Journal of Civil Engineering, 40(5), 483–498. https://doi.org/10.1139/cjce-2012-0055

Sadeghi, M., Ghafory-Ashtiany, M., & Pakdel-Lahiji, N. (2015). Developing seismic vulnerability curves for typical Iranian buildings. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(6), 627–640.

Salgado-Gálvez, M. A., Carreño, M. L., Barbat, A. H., & Cardona, O. D. (2015). Evaluación probabilista del riesgo sísmico en Lorca mediante simulaciones de escenarios. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería. https://doi.org/10.1016/j.rimni.2014.12.001

Saloustros, S., Pelà, L., Contrafatto, F. R., Roca, P., & Petromichelakis, I. (2019). Vulnerability Assessment of Monumental Masonry Structures Including Uncertainty. In RILEM Bookseries (Vol. 18, pp. 1219–1228). https://doi.org/10.1007/978-3-319-99441-3_131

SEAOC, V. (1995). Vision 2000 Committee. Perform Ance-Based Seism Ic Engi Neering OfBuildings, 4.

Segura, R., Bernier, C., Monteiro, R., & Paultre, P. (2019a). On the seismic fragility assessment of concrete gravity dams in eastern Canada. Earthquake Spectra, 55(1), 211–231. https://doi.org/10.1193/012418EQS024M

Segura, R., Bernier, C., Monteiro, R., & Paultre, P. (2019b). On the seismic fragility assessment of concrete gravity dams in eastern Canada. Earthquake Spectra, 35(1), 211–231.

Segura, R., Monteiro, R., & Paultre, P. (2018). Improved seismic fragility assessment of concrete gravity dams in Eastern Canada.

Selley, R. C., Cocks, R., & Plimer, I. (2004). Encyclopedia of geology. Academic Press.

Senel, S. M., & Kayhan, A. H. (2010). Fragility based damage assesment in existing precast industrial buildings: A case study for Turkey. Structural Engineering and Mechanics, 34(1), 39–60. https://doi.org/10.12989/sem.2010.34.1.039

Serdar Kirçil, M., & Polat, Z. (2006). Fragility analysis of mid-rise R/C frame buildings. Engineering Structures, 28(9), 1335–1345. https://doi.org/10.1016/j.engstruct.2006.01.004

Shafei, B., Zareian, F., & Lignos, D. G. (2011). A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems. Engineering Structures, 33(4), 1107–1116. https://doi.org/10.1016/j.engstruct.2010.12.028

Shahidi, S. G., Pakzad, S. N., Ricles, J. M., & Martin, J. R. (2016). Assessment of the 2011 Virginia earthquake damage and seismic fragility analysis of the Washington Monument. Earthquake Spectra, 32(4), 2399–2423.

Shamsoddini Motlagh, Z., Raissi Dehkordi, M., Eghbali, M., & Samadian, D. (2020). Evaluation of seismic resilience index for typical RC school buildings considering carbonate corrosion effects. International Journal of Disaster Risk Reduction, 46(April 2019), 101511. https://doi.org/10.1016/j.ijdrr.2020.101511

Shinozuka, M., Feng, M. Q., Kim, H.-K., & Kim, S.-H. (2000). Nonlinear static procedure for fragility curve development. Journal of Engineering Mechanics, 126(12), 1287–1295.

Shinozuka, M., Feng, M. Q., Lee, J., & Naganuma, T. (2000). Statistical analysis of fragility curves. Journal of Engineering Mechanics, 126(12), 1224–1231.

Shome, N. (1999). Probabilistic seismic demand analysis of nonlinear structures.

Silva, V., Crowley, H., Varum, H., & Pinho, R. (2015). Seismic risk assessment for mainland Portugal. Bulletin of Earthquake Engineering, 13(2), 429–457.

Simões, A., Milošević, J., Meireles, H., Bento, R., Cattari, S., & Lagomarsino, S. (2015). Fragility curves for old masonry building types in Lisbon. Bulletin of Earthquake Engineering, 13(10), 3083–3105.

Singhal, A., & Kiremidjian, A. S. (1996). Method for probabilistic evaluation of seismic structural damage (pp. 122(12), 1459–1467). Journal of Structural Engineering. https://doi.org/10.1163/_q3_SIM_00374

Singhal, A., & Kiremidjian, A. S. (1995). Method for developing motion damage relationships for reinforced concrete frames. In Technical Report NCEER (Issues 95–0008). US National Center Earthquake Engineering Research.

Siqueira, G. H., Sanda, A. S., Paultre, P., & Padgett, J. E. (2014). Fragility curves for isolated bridges in eastern Canada using experimental results. Engineering Structures, 74, 311–324. https://doi.org/10.1016/j.engstruct.2014.04.053

Sobhan, M. S., Rofooei, F. R., & Attari, N. K. A. (2017). Buckling behavior of the anchored steel tanks under horizontal and vertical ground motions using static pushover and incremental dynamic analyses. Thin Walled Structures, 112(December 2016), 173–183. https://doi.org/10.1016/j.tws.2016.12.022

Solomos, G., & Caverzan, A. (2014). Review on resilience in literature and standards for critical built-infrastructure. https://doi.org/10.2788/872668

Soto, I. B. R. (2011). Investigación científica e investigación tecnológica como componentes para la innovación: consideraciones técnicas y metodológicas. Contribuciones a Las Ciencias Sociales, 8.

Su, R. K. L., & Lee, C. L. (2013). Development of seismic fragility curves for low-rise masonry infilled reinforced concrete buildings by a coefficient-based method. Earthquake Engineering and Engineering Vibration, 12(2), 319–332. https://doi.org/10.1007/s11803-013-0174-0

Taboada, D., Chiroque, J., Crisanto, L., Acuña, E., & Gonzales, I. (2018a). ANÁLISIS Y DISEÑO DE UN HOSPITAL AISLADO SÍSMICAMENTE EMPLEANDO MÉTODOS DE RESILIENCIA SÍSMICA (C. de I. del P. C. N. 12o S. I. en G. del R. de D. 12th I. S. in D. R. Management (ed.); pp. 114–116). CIP - Lima. http://www.cip.org.pe/publicaciones/2019/memorias-simposio-grd-2018-detalle.pdf

Taboada, D., Chiroque, J., Crisanto, L., Acuña, E., & Gonzales, I. (2018b). ANÁLISIS Y DISEÑO DE UN HOSPITAL AISLADO SÍSMICAMENTE EMPLEANDO MÉTODOS DE RESILIENCIA SÍSMICA (C. de I. del P. C. N. 12o S. I. en G. del R. de D. 12th I. S. in D. R. Management (ed.); pp. 114–116). CIP - Lima.

Tajammolian, H., Khoshnoudian, F., Rad, A. R., & Loghman, V. (2018). Seismic fragility assessment of asymmetric structures supported on TCFP bearings subjected to near-field earthquakes. Structures, 13, 66–78.

Tang, W. H., Ang, A. (2007). Probability Concepts in Engineering: Emphasis on Applications to Civil & Environmental Engineering. Wiley.

Terremoti, C. N. R. G. N. D. (1993). Rischio sismico di edifici pubblici Parte II Risultati per la regione Emilia-Romagna. CNR Gruppo Nazionale Difesa Terremoti, Roma.

Tirca, L., Serban, O., Lin, L., Wang, M., & Lin, N. (2016). Improving the Seismic Resilience of Existing Braced-Frame Office Buildings. Journal of Structural Engineering, 142(8), 1–14. https://doi.org/10.1061/(asce)st.1943-541x.0001302

Tsionis, G., & Fardis, M. N. (2014). Seismic fragility curves for reinforced concrete buildings and bridges in Thessaloniki. The 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey.

UNISDR, U. (2005). Hyogo framework for action 2005–2015: Building the resilience of nations and communities to disasters. Extract from the Final Report of the World Conference on Disaster Reduction (A/CONF. 206/6), 380.

Vamvatsikos, D., & Allin Cornell, C. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31(3), 491–514. https://doi.org/10.1002/eqe.141

Vamvatsikos, D., & Cornell, A. (2006). Incremental dynamic analysis with two components of motion for a 3D steel structure. Proceedings of the 8th US National Conference on Earthquake Engineering.

Van der Leeuw, S. E., & Aschan-Leygonie, C. (2005). A long-term perspective on resilience in socio-natural systems. Micro-Meso-Macro: Addressing Complex Systems Couplings, London, World Scientific, 227–264.

Vargas Alzate, Y. F. (2013). Análisis estructural estático y dinámico probabilista de edificios de hormigón armado. Aspectos metodológicos y aplicaciones a la evaluación del daño.

Vargas, Y. (2013). Análisis estructural estático y dinámico probabilista de edificios de hormigón armado. 203.

Vargas, Y. F., Pujades, L. G., Barbat, A. H., & Hurtado, J. E. (2013a). Evaluación probabilista de la capacidad, fragilidad y daño sísmico de edificios de hormigón armado. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 29(2), 63–78. https://doi.org/10.1016/j.rimni.2013.04.003

Vargas, Y. F., Pujades, L. G., Barbat, A. H., & Hurtado, J. E. (2013b). Evaluación probabilista de la capacidad, fragilidad y daño sísmico de edificios de hormigón armado. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 29(2), 63–78. https://doi.org/10.1016/j.rimni.2013.04.003

Vargas, Y. F., Pujades, L. G., Barbat, A. H., & Hurtado, J. E. (2013c). Evaluación probabilista de la capacidad, fragilidad y daño sísmico de edificios de hormigón armado. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 29(2), 63–78. https://doi.org/10.1016/j.rimni.2013.04.003

Vicente, R., Ferreira, T., & Maio, R. (2014). Seismic Risk at the Urban Scale: Assessment, Mapping and Planning. Procedia Economics and Finance, 18(September), 71–80. https://doi.org/10.1016/s2212-5671(14)00915-0

Vicente, R., Parodi, S., Lagomarsino, S., Varum, H., & Mendes da Silva, J. A. R. (2008). Seismic vulnerability assessment, damage scenarios and loss estimation. Case study of the old city centre of Coimbra, Portugal. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17.

Vicente, R., Parodi, S., Lagomarsino, S., Varum, H., & Silva, J. A. R. M. (2011a). Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bulletin of Earthquake Engineering, 9(4), 1067–1096. https://doi.org/DOI 10.1007/s10518-010-9233-3

Vicente, R., Parodi, S., Lagomarsino, S., Varum, H., & Silva, J. A. R. M. (2011b). Seismic vulnerability and risk assessment: case study of the historic city centre of Coimbra, Portugal. Bulletin of Earthquake Engineering, 9(4), 1067–1096.

Vickers, M. H., & Kouzmin, A. (2001). ‘Resilience’in organizational actors and rearticulating ‘voice’: towards a humanistic critique of new public management. Public Management Review, 3(1), 95–119.

Villar-Vega, M., Silva, V., Crowley, H., Yepes, C., Tarque, N., Acevedo, A. B., Hube, M. A., Gustavo, C. D., & María, H. S. (2017a). Development of a fragility model for the residential building stock in South America. Earthquake Spectra, 33(2), 581–604. https://doi.org/10.1193/010716EQS005M

Villar-Vega, M., Silva, V., Crowley, H., Yepes, C., Tarque, N., Acevedo, A. B., Hube, M. A., Gustavo, C. D., & María, H. S. (2017b). Development of a fragility model for the residential building stock in South America. Earthquake Spectra, 33(2), 581–604.

Vision, S. (2000). Committee 1995. Performance Based Seismic Engineering of Buildings, Part, 2.

Viteri, N. C. (2012). LA INVESTIGACIÓN MIXTA, ESTRATEGIA ANDRAGÓGICA FUNDAMENTAL PARA FORTALECER LAS CAPACIDADES INTELECTUALES SUPERIORES. REVISTA CIENTÍFICA VOL 2, NÚMERO 2, AGOSTO DE 2012.

Vona, M. (2014). Fragility curves of existing RC buildings based on specific structural performance levels. Open Journal of Civil Engineering, 4(02), 120.

Wallace, N. M., & Miller, T. H. (2008). Seismic screening of public facilities in Oregon’s western counties. Practice Periodical on Structural Design and Construction, 13(4), 189–197.

Waller, M. A. (2001). Resilience in ecosystemic context: Evolution of the concept. American Journal of Orthopsychiatry, 71(3), 290–297.

Whitman, R. V., Anagnos, T., Kircher, C. A., Lagorio, H. J., Lawson, R. S., & Schneider, P. (1997a). Development of a national earthquake loss estimation methodology. Earthquake Spectra, 13(4), 643–661. https://doi.org/10.1193/1.1585973

Whitman, R. V, Anagnos, T., Kircher, C. A., Lagorio, H. J., Lawson, R. S., & Schneider, P. (1997b). Development of a national earthquake loss estimation methodology. Earthquake Spectra, 13(4), 643–661.

Wijayanti, E., Kristiawan, S., Purwanto, E. D. Y., & Sangadji, S. (2016a). Seismic vulnerability of reinforced concrete building based on the development of fragility curve: a case study. Applied Mechanics and Materials, 845, 252–258.

Wijayanti, E., Kristiawan, S., Purwanto, E., & Sangadji, S. (2016b). Seismic Vulnerability of Reinforced Concrete Building Based on the Development of Fragility Curve: A Case Study. Applied Mechanics and Materials, 845(July), 252–258. https://doi.org/10.4028/www.scientific.net/amm.845.252

Wildavsky, A. B. (1988). Searching for safety (Vol. 10). Transaction publishers.

Yamin, L. (2015). Building Seismic Risk in Terms of Economic Lossess By Integration of Components Repair Costs. 176.

Yamin, L. E., Hurtado, A. I., Barbat, A. H., & Cardona, O. D. (2014a). Seismic and wind vulnerability assessment for the GAR-13 global risk assessment. International Journal of Disaster Risk Reduction, 10(PB), 452–460. https://doi.org/10.1016/j.ijdrr.2014.05.007

Yamin, L. E., Hurtado, A. I., Barbat, A. H., & Cardona, O. D. (2014b). Seismic and wind vulnerability assessment for the GAR-13 global risk assessment. International Journal of Disaster Risk Reduction, 10, 452–460.

Yamin, L., Hurtado, A., Rincon, R., Barbat, A. H., & Reyes, J. (2014). Use of Non-Linear Dynamic Analysis in the Assessment of Seismic Vulnerability of Buildings. Second European Conference on Earthquake Engineering and Seismology, 1–9.

Yamin, L., Hurtado, A., Rincon, R., Dorado, J., & Reyes, J. (2017). Probabilistic seismic vulnerability assessment of buildings in terms of economic losses. Engineering Structures, 138, 308–323. https://doi.org/10.1016/j.engstruct.2017.02.013

Yamín Lacouture, L. E. (2016). Riesgo sísmico de edificaciones en términos de pérdidas económicas mediante integración de costos de reparación de componentes [Universitat Politècnica de Catalunya]. In TDX (Tesis Doctorals en Xarxa). https://upcommons.upc.edu/handle/2117/96210#.X3j02iq6JR0.mendeley

Yépez, F., Barbat, H. A., & Canas, J. A. (1996a). Evaluación probabilista de la vulnerabilidad y riesgo sísmico de estructuras de hormigón armado por medio de simulación [Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)]. https://upcommons.upc.edu/handle/2117/27736#.X3kFqQdIDVo.mendeley

Yépez, F., Barbat, H. A., & Canas, J. A. (1996b). Evaluación probabilista de la vulnerabilidad y riesgo sísmico de estructuras de hormigón armado por medio de simulación [Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)]. http://upcommons.upc.edu/handle/2117/27736

Yun, S., Hamburger, R. O., Cornell, C. A., & Foutch, D. A. (2002). Seismic Performance Evaluation for Steel Moment Frames. Journal of Structural Engineering, 128(4), 534–545. https://doi.org/10.1061/(asce)0733-9445(2002)128:4(534)

Zacharenaki, A. E., Fragiadakis, M., & Papadrakakis, M. (2013). Reliability-based optimum seismic design of structures using simplified performance estimation methods. Engineering Structures, 52, 707–717. https://doi.org/10.1016/j.engstruct.2013.03.007

Zameeruddin, M., & Sangle, K. K. (2016). Review on Recent developments in the performance-based seismic design of reinforced concrete structures. In Structures (Vol. 6, pp. 119–133). Elsevier B.V. https://doi.org/10.1016/j.istruc.2016.03.001

Zeng, X., Lu, X., Yang, T. Y., & Xu, Z. (2016). Application of the FEMA-P58 methodology for regional earthquake loss prediction. Natural Hazards, 83(1), 177–192.

Zhang, J. Z., Jiang, J., & Li, G. Q. (2017). An improved consecutive modal pushover procedure for estimating seismic demands of multi-storey framed buildings. Structural Design of Tall and Special Buildings, 26(4). https://doi.org/10.1002/tal.1336

55

Descargas

Publicado

May 3, 2024

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.