Aerosoles atmosféricos en el contexto de cambio climático

Autores/as

Roberto Angeles Vasquez
Universidad Nacional del Centro del Perú
https://orcid.org/0000-0002-7248-912X
Julio Angeles Suazo
Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
https://orcid.org/0000-0001-8327-9032
Carmencita Lavado Meza
Universidad Nacional Intercultural de la Selva Central Juan Santos Atahualpa
https://orcid.org/0000-0003-1620-7180
Gloria Maria Lopez Yupanqui
Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo
https://orcid.org/0000-0002-4945-7189
Luis Suarez Salas
Instituto Geofísico del Perú
https://orcid.org/0000-0003-1857-8399
Hugo Abi Karam
Universidade Federal do Rio de Janeiro
https://orcid.org/0000-0002-0154-5569

Palabras clave:

Aerosoles, atmosféricos, cambio climático

Sinopsis

En la etapa de docencia que realice desde el año 2014, he presenciado ausencia de bibliografía peruana adecuada para los cursos relacionados a la contaminación del aire. Así mismo, he observado en aula la deficiencia en los estudiantes de pregrado en la manipulación de modelos atmosféricos, procesamiento de datos satelitales y compresión en la temática de contaminación de aire, con especial interés en aerosoles atmosféricos
También he observado la falta de motivación al investigar temas relacionados a los aerosoles atmosféricos. Por ello, me he motivado en escribir el presente libro con gran apoyo de los demás autores, para inculcar y motivar a los lectores a realizar investigaciones que contribuyan a plantear soluciones para mitigar impactos ambientales ocasionados por los aerosoles atmosféricos. 
Por ello el presente libro de investigación constituye una versión que plantea investigaciones y conceptos básicos relacionados a la temática o área de aerosoles atmosfericos, enfocados a la contaminación del aire y a la vez al cambio climático, así mismo aborda las amenazas e impactos ambientales. Así mismo, en el presente libro se plasma conocimientos de ciencia e ingeniería, y estará disponible para profesionales, maestros y estudiantes. Con esto es posible situar de forma apropiada al público laico en asuntos de contaminación del aire por aerosoles atmosféricos. Por consecuencia, estoy agradecido y en deuda con mis colegas científicos por sus ideas sobre cómo incorporar las nuevas tendencias de investigaciones atmosféricas. 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

[Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., & (eds.). (2021). IPCC, 2021: Climate Change 2021: The Physical Science Basis. In Cambridge University Press. In Press.

Adetona, O., Li, Z., Sjödin, A., Romanoff, L. C., Aguilar-Villalobos, M., Needham, L. L., Hall, D. B., Cassidy, B. E., & Naeher, L. P. (2013). Biomonitoring of polycyclic aromatic hydrocarbon exposure in pregnant women in Trujillo, Peru - Comparison of different fuel types used for cooking. Environment International, 53. https://doi.org/10.1016/j.envint.2012.11.010

Alam, K., Trautmann, T., & Blaschke, T. (2011). Aerosol optical properties and radiative forcing over mega-city Karachi. Atmospheric Research, 101(3). https://doi.org/10.1016/j.atmosres.2011.05.007

Ångström, A. (1929). On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geografiska Annaler, 11(2). https://doi.org/10.1080/20014422.1929.11880498

Ardon-Dryer, K., Dryer, Y., Williams, J. N., & Moghimi, N. (2020). Measurements of PM2.5 with PurpleAir under atmospheric conditions. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-13-5441-2020

Astete, J., Gastañaga, M. del C., & Pérez, D. (2014). Niveles de metales pesados en el ambiente y su exposición en la población luego de cinco años de exploración minera en Las Bambas, Perú 2010. Revista Peruana de Medicina Experimental y Salud Pública, 31(4). https://doi.org/10.17843/rpmesp.2014.314.120

Bodhaine, B. A., Wood, N. B., Dutton, E. G., & Slusser, J. R. (1999). On Rayleigh optical depth calculations. Journal of Atmospheric and Oceanic Technology, 16(11 PART 2). https://doi.org/10.1175/1520-0426(1999)016<1854:orodc>2.0.co;2

Boiyo, R., Kumar, K. R., Zhao, T., & Guo, J. (2019). A 10-Year Record of Aerosol Optical Properties and Radiative Forcing Over Three Environmentally Distinct AERONET Sites in Kenya, East Africa. Journal of Geophysical Research: Atmospheres, 124(3). https://doi.org/10.1029/2018JD029461

Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2011). Anthropogenic aerosols and the weakening of the south asian summer monsoon. Science, 334(6055). https://doi.org/10.1126/science.1204994

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11). https://doi.org/10.1002/jgrd.50171

Castro, T., Madronich, S., Rivale, S., Muhlia, A., & Mar, B. (2001). The influence of aerosols on photochemical smog in Mexico City. Atmospheric Environment, 35(10). https://doi.org/10.1016/S1352-2310(00)00449-0

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science. https://doi.org/10.1126/science.255.5043.423

Che, H., Qi, B., Zhao, H., Xia, X., Eck, T. F., Goloub, P., Dubovik, O., Estelles, V., Cuevas-Agulló, E., Blarel, L., Wu, Y., Zhu, J., Du, R., Wang, Y., Wang, H., Gui, K., Yu, J., Zheng, Y., Sun, T., … Zhang, X. (2018). Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-18-405-2018

Chen, B., Stein, A. F., Castell, N., de la Rosa, J. D., Sanchez de la Campa, A. M., Gonzalez-Castanedo, Y., & Draxler, R. R. (2012). Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmospheric Environment, 49. https://doi.org/10.1016/j.atmosenv.2011.12.014

Chen, H., Gu, X., Cheng, T., Yu, T., & Li, Z. (2013). Characteristics of aerosol types over China. Yaogan Xuebao/Journal of Remote Sensing, 17(6). https://doi.org/10.11834/jrs.20133028

Chýlek, P., Videen, G., Geldart, D. J. W., Dobbie, J. S., & Tso, H. C. W. (2000). Effective Medium approximations for Heterogeneous Particles. In Light Scattering by Nonspherical Particles. https://doi.org/10.1016/b978-012498660-2/50036-7

Commodore, A. A., Hartinger, S. M., Lanata, C. F., Mäusezahl, D., Gil, A. I., Hall, D. B., Aguilar-Villalobos, M., & Naeher, L. P. (2013). A pilot study characterizing real time exposures to particulate matter and carbon monoxide from cookstove related woodsmoke in rural Peru. Atmospheric Environment, 79. https://doi.org/10.1016/j.atmosenv.2013.06.047

De La Cruz, A. H., Roca, Y. B., Suarez-Salas, L., Pomalaya, J., Tolentino, D. A., & Gioda, A. (2019). Chemical characterization of PM 2.5 at rural and urban sites around the metropolitan area of Huancayo (Central Andes of Peru). Atmosphere. https://doi.org/10.3390/atmos10010021

Deep, A., Pandey, C. P., Nandan, H., Singh, N., Yadav, G., Joshi, P. C., Purohit, K. D., & Bhatt, S. C. (2021). Aerosols optical depth and Ångström exponent over different regions in Garhwal Himalaya, India. Environmental Monitoring and Assessment, 193(6). https://doi.org/10.1007/s10661-021-09048-4

Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I., Yang, P., & Slutsker, I. (2002). Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophysical Research Letters, 29(10). https://doi.org/10.1029/2001gl014506

Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., & Slutsker, I. (2000). Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. Journal of Geophysical Research Atmospheres, 105(D8). https://doi.org/10.1029/2000JD900040

Dubovik, Oleg, Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., & Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59(3). https://doi.org/10.1175/1520-0469(2002)059%3C0590%3AVOAAOP%3E2.0.C

Dubovik, Oleg, & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research Atmospheres, 105(D16). https://doi.org/10.1029/2000JD900282

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research Atmospheres, 104(D24). https://doi.org/10.1029/1999JD900923

Eck, T. F., Holben, B. N., Reid, J. S., O’Neill, N. T., Schafer, J. S., Dubovik, O., Smirnov, A., Yamasoe, M. A., & Artaxo, P. (2003). High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophysical Research Letters, 30(20). https://doi.org/10.1029/2003GL017861

Estevan, R., Martínez-Castro, D., Suarez-Salas, L., Moya, A., & Silva, Y. (2019). First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory, Peru. Atmospheric Environment: X. https://doi.org/10.1016/j.aeaoa.2019.100037

Fitzgerald, C., Aguilar-Villalobos, M., Eppler, A. R., Dorner, S. C., Rathbun, S. L., & Naeher, L. P. (2012). Testing the effectiveness of two improved cookstove interventions in the Santiago de Chuco Province of Peru. Science of the Total Environment, 420. https://doi.org/10.1016/j.scitotenv.2011.10.059

Flores-Rojas, J. L., Moya-Álvarez, A. S., Valdivia-Prado, J. M., Piñas-Laura, M., Kumar, S., Karam, H. A., Villalobos-Puma, E., Martínez-Castro, D., & Silva, Y. (2021). On the dynamic mechanisms of intense rainfall events in the central Andes of Peru, Mantaro valley. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2020.105188

Gadhavi, H., & Jayaraman, A. (2010). Absorbing aerosols: Contribution of biomass burning and implications for radiative forcing. Annales Geophysicae, 28(1). https://doi.org/10.5194/angeo-28-103-2010

Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R. R., Thompson, A. M., & Schafer, J. S. (2012). An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. Journal of Geophysical Research Atmospheres, 117(17). https://doi.org/10.1029/2012JD018127

Gonzales, G. F., Zevallos, A., Gonzales-Castañeda, C., Nuñez, D., Gastañaga, C., Cabezas, C., Naeher, L., Levy, K., & Steenlan, K. (2014). Contaminación ambiental, variabilidad climática y cambio climático: una revisión del impacto en la salud de la población peruana. Revista Peruana de Medicina Experimental y Salud Pública, 31(3). https://doi.org/10.17843/rpmesp.2014.313.94

Han, X., Aguilar-Villalobos, M., Allen, J., Carlton, C. S., Robinson, R., Bayer, C., & Naeher, L. P. (2005). Traffic-related occupational exposures to PM2.5, CO, and VOCs in Trujillo, Peru. International Journal of Occupational and Environmental Health, 11(3). https://doi.org/10.1179/oeh.2005.11.3.276

Haywood, J. M., & Shine, K. P. (1995). The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters, 22(5). https://doi.org/10.1029/95GL00075

Hernández-Vásquez, A., & Díaz-Seijas, D. (2017). Contaminación ambiental y repositorios de datos históricos de contaminantes atmosféricos en Perú. In Salud Publica de Mexico (Vol. 59, Issue 5). https://doi.org/10.21149/8476

Hochgatterer, K., Moshammer, H., & Haluza, D. (2013). Dust is in the air: Effects of occupational exposure to mineral dust on lung function in a 9-year study. Lung, 191(3). https://doi.org/10.1007/s00408-013-9463-7

Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’Neill, N. T., … Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research Atmospheres, 106(D11). https://doi.org/10.1029/2001JD900014

Jacobson, M. Z. (2000). A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophysical Research Letters, 27(2). https://doi.org/10.1029/1999GL010968

Kim, S. W., Yoon, S. C., Kim, J., & Kim, S. Y. (2007). Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmospheric Environment, 41(8). https://doi.org/10.1016/j.atmosenv.2006.10.044

Kiran Kumar, T., Gadhavi, H., Jayaraman, A., Sai Suman, M. N., & Vijaya Bhaskara Rao, S. (2013). Temporal and spatial variability of aerosol optical depth over South India as inferred from MODIS. Journal of Atmospheric and Solar-Terrestrial Physics, 94. https://doi.org/10.1016/j.jastp.2012.12.010

Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., Van Den Oord, G. H. J., Bhartia, P. K., Tamminen, J., De Haan, J. F., & Veefkind, J. P. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2006.872336

Li, Z., Commodore, A., Hartinger, S., Lewin, M., Sjödin, A., Pittman, E., Trinidad, D., Hubbard, K., Lanata, C. F., Gil, A. I., Mäusezahl, D., & Naeher, L. P. (2016). Biomonitoring Human Exposure to Household Air Pollution and Association with Self-reported Health Symptoms – A Stove Intervention Study in Peru. Environment International, 97. https://doi.org/10.1016/j.envint.2016.09.011

Liou, K. N. (2002). An Introduction to Atmospheric Radiation (Google eBook). In International Geophysics (Vol. 84).

Lizarraga-Isla, I. J., Pomalaya-Valdez, J. E., Suarez-Salas, L. F., & Bendezu-Roca, Y. (2019). Dispersion of particulate material 2.5 emitted by roasted chicken restaurants using the aermod model in huancayo metropolitan, peru. DYNA (Colombia), 86(211). https://doi.org/10.15446/dyna.v86n211.78812

Loaiza, I., Hurtado, D., Miglio, M., Orrego, H., & Mendo, J. (2015). Tissue-specific Cd and Pb accumulation in Peruvian scallop (Argopecten purpuratus) transplanted to a suspended and bottom culture at Sechura Bay, Peru. Marine Pollution Bulletin, 91(2). https://doi.org/10.1016/j.marpolbul.2014.09.058

Middleton, N., Yiallouros, P., Kleanthous, S., Kolokotroni, O., Schwartz, J., Dockery, D. W., Demokritou, P., & Koutrakis, P. (2008). A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: The effect of short-term changes in air pollution and dust storms. Environmental Health: A Global Access Science Source, 7. https://doi.org/10.1186/1476-069X-7-39

Morales-Ancajima, V. C., Tapia, V., Vu, B. N., Liu, Y., Alarcón-Yaquetto, D. E., & Gonzales, G. F. (2019). Increased Outdoor PM2.5 Concentration Is Associated with Moderate/Severe Anemia in Children Aged 6-59 Months in Lima, Peru. Journal of Environmental and Public Health, 2019. https://doi.org/10.1155/2019/6127845

Mukherjee, T., & Vinoj, V. (2020). Atmospheric aerosol optical depth and its variability over an urban location in Eastern India. Natural Hazards, 102(2). https://doi.org/10.1007/s11069-019-03636-x

Ordoñez-Aquino, C., & Sánchez-Ccoyllo, O. (2017). Caracterización quimica - morfológica del PM2,5 en Lima Metropolitana mediante microscopía electónica de barrido (MEB). Acta Nova, 8.

Otero, L. A., Fochesatto, G. J., Ristori, P. R., Flamant, P. H., Piacentini, R. D., Holben, B., & Quel, E. J. (2004). Simple method to derive aerosol microphysical properties from AERONET multiwavelength direct solar measurements. Advances in Space Research, 34(10 SPEC. ISS.). https://doi.org/10.1016/j.asr.2003.07.059

Otero, L., Ristori, P., Holben, B., & Quel, E. (2006). Espesor óptico de aerosoles durante el año 2002 para diez estaciones pertenecientes a la red AERONET-NASA Aerosol Optical Thickness at ten AERONET-NASA stations during 2002. In www.sedoptica.es Opt. Pura Apl (Vol. 39, Issue 4). www.sedoptica.es.

Pacsi Valdivia, S., & Llanos Puga, C. M. (2017). Evaluación de la composición química del material particulado PM2,5 en la Universidad Nacional Agraria La Molina. Anales Científicos, 78(2). https://doi.org/10.21704/ac.v78i2.1058

Pearce, J. L., Rathbun, S. L., Aguilar-Villalobos, M., & Naeher, L. P. (2009). Characterizing the spatiotemporal variability of PM2.5 in Cusco, Peru using kriging with external drift. Atmospheric Environment, 43(12). https://doi.org/10.1016/j.atmosenv.2008.10.060

Pokharel, M., Guang, J., Liu, B., Kang, S., Ma, Y., Holben, B. N., Xia, X., Xin, J., Ram, K., Rupakheti, D., Wan, X., Wu, G., Bhattarai, H., Zhao, C., & Cong, Z. (2019). Aerosol Properties Over Tibetan Plateau From a Decade of AERONET Measurements: Baseline, Types, and Influencing Factors. Journal of Geophysical Research: Atmospheres, 124(23). https://doi.org/10.1029/2019JD031293

Ramachandran, S. (2018). Atmospheric aerosols: Characteristics and radiative effects. In Atmospheric Aerosols: Characteristics and Radiative Effects. https://doi.org/10.1201/9781315152400

Reátegui-Romero, W., Sánchez-Ccoyllo, O. R., Andrade, M. de F., & Moya-Alvarez, A. (2018). PM2.5 Estimation with the WRF/Chem Model, Produced by Vehicular Flow in the Lima Metropolitan Area. Open Journal of Air Pollution, 07(03). https://doi.org/10.4236/ojap.2018.73011

Regmi, J., Poudyal, K. N., Pokhrel, A., Gyawali, M., Tripathee, L., Panday, A., Barinelli, A., & Aryal, R. (2020). Investigation of aerosol climatology and long-range transport of aerosols over Pokhara, Nepal. Atmosphere, 11(8). https://doi.org/10.3390/ATMOS11080874

Remer, L. A., & Kaufman, Y. J. (1998). Dynamic aerosol model: Urban/industrial aerosol. Journal of Geophysical Research Atmospheres, 103(D12). https://doi.org/10.1029/98JD00994

Ricchiazzi, P., Yang, S., Gautier, C., & Sowle, D. (1998). SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. Bulletin of the American Meteorological Society, 79(10). https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2

Rojas, F. J., Pacsi, S., Sánchez-Ccoyllo, O. R., & Perales, M. M. (2019). Pronóstico de Reducción de Emisiones, de Enfermos y de Gastos Asociados al incluir el Gas Natural dentro de la Matriz Energética en Perú. Información Tecnológica, 30(3). https://doi.org/10.4067/s0718-07642019000300117

Romero, Y., Chicchon, N., Duarte, F., Noel, J., Ratti, C., & Nyhan, M. (2020). Quantifying and spatial disaggregation of air pollution emissions from ground transportation in a developing country context: Case study for the Lima Metropolitan Area in Peru. Science of the Total Environment, 698. https://doi.org/10.1016/j.scitotenv.2019.134313

Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., Decarlo, P. F., Jimenez, J. L., Livingston, J. M., Redemann, J., Dubovik, O., & Strawa, A. (2010). Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics, 10(3). https://doi.org/10.5194/acp-10-1155-2010

Sánchez-Ccoyllo, O. R., Ordoñez-Aquino, C. G., Muñoz, Á. G., Llacza, A., Andrade, M. F., Liu, Y., Reátegui-Romero, W., & Brasseur, G. (2018). Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016. International Journal of Applied Engineering Research, 13(11). https://doi.org/10.37622/ijaer/13.11.2018.10129-10141

Sayahi, T., Kaufman, D., Becnel, T., Kaur, K., Butterfield, A. E., Collingwood, S., Zhang, Y., Gaillardon, P. E., & Kelly, K. E. (2019). Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113131

Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics. Atmospheric Chemistry and Physics, 5(1).

Shifrin, K. S. (1995). Simple relationships for the Ångström parameter of disperse systems. Applied Optics, 34(21). https://doi.org/10.1364/ao.34.004480

Shin, S. K., Tesche, M., Noh, Y., & Müller, D. (2019). Aerosol-type classification based on AERONET version 3 inversion products. Atmospheric Measurement Techniques, 12(7). https://doi.org/10.5194/amt-12-3789-2019

Silva, J., Rojas, J., Norabuena, M., Molina, C., Toro, R. A., & Leiva-Guzmán, M. A. (2017). Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-6327-2

Sinyuk, A., Dubovik, O., Holben, B., Eck, T. F., Breon, F. M., Martonchik, J., Kahn, R., Diner, D. J., Vermote, E. F., Roger, J. C., Lapyonok, T., & Slutsker, I. (2007). Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. Remote Sensing of Environment, 107(1–2). https://doi.org/10.1016/j.rse.2006.07.022

Srivastava, A. K., Singh, S., Tiwari, S., & Bisht, D. S. (2012). Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin. Environmental Science and Pollution Research, 19(4). https://doi.org/10.1007/s11356-011-0633-y

Stone, R., Anderson, G., Andrews, E., Dutton, E., Harris, J., Shettle, E., & Berk, A. (2005). Asian dust signatures at Barrow: Observed and simulated. Incursions and impact of Asian dust over Northern Alaska. 2005 IEEE Workshop on Remote Sensing of Atmospheric Aerosols. https://doi.org/10.1109/AERSOL.2005.1494152

Stone, R. S., Anderson, G. P., Andrews, E., Dutton, E. G., Shettle, E. P., & Berk, A. (2007). Incursions and radiative impact of Asian dust in northern Alaska. Geophysical Research Letters, 34(14). https://doi.org/10.1029/2007GL029878

Suárez-Salas, L., Álvarez Tolentino, D., Bendezú, Y., & Pomalaya, J. (2017). CARACTERIZACIÓN QUÍMICA DEL MATERIAL PARTICULADO ATMOSFÉRICO DEL CENTRO URBANO DE HUANCAYO, PERÚ. Revista de La Sociedad Química Del Perú. https://doi.org/10.37761/rsqp.v83i2.197

Suazo, J. M. A., Salas, L. S., Cruz, A. R. H. D. La, Vasquez, R. A., Aylas, G. R., Condor, A. R., Rojas, E. R., Ccuro, F. M., Rojas, J. L. F., & Karam, H. A. (2020). Direct radiative forcing due to aerosol properties at the peruvian antarctic station and metropolitan huancayo area. Anuario Do Instituto de Geociencias. https://doi.org/10.11137/2020_4_404_412

Suazo, M. J. A., Condor, A. G. R., Aylas, G. Y. R., Rojas, L. J. F., Vasquez, R. A., Suazo, N. A., & Karam, H. A. (2020). Estimación de la Turbidez Atmosférica Usando el Modelo IQC en el Área Metropolitana de Huancayo – Perú. Anuario Do Instituto de Geociencias, 43(3), 72–83. https://doi.org/10.11137/2020_3_72_83

Tapia, V., Carbajal, L., Vásquez, V., Espinoza, R., Vásquez-Velásquez, C., Steenland, K., & Gonzales, G. F. (2018). Reordenamiento vehicular y contaminación ambiental por material particulado (2,5 y 10), dióxido de azufre y dióxido de nitrógeno en Lima Metropolitana, Perú. Revista Peruana de Medicina Experimental y Salud Pública, 35(2). https://doi.org/10.17843/rpmesp.2018.352.3250

Thomason, L. W., Herman, B. M., & Reagan, J. A. (1983). The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses. Journal of the Atmospheric Sciences, 40(7). https://doi.org/10.1175/1520-0469(1983)040<1851:TEOAAW>2.0.CO;2

Tohidi, R., Sajadi, B., & Ahmadi, G. (2020). The effect of nasal airway obstruction on the dispersion and deposition of inhaled volatile droplets in the human nasal cavity: A numerical study. Journal of Aerosol Science, 150. https://doi.org/10.1016/j.jaerosci.2020.105650

Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R. S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G. H., Myhre, C. L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., … Yamanouchi, T. (2007). Aerosols in polar regions: A historical overview based on optical depth and in situ observations. In Journal of Geophysical Research Atmospheres (Vol. 112, Issue 16). https://doi.org/10.1029/2007JD008432

Wang, H. Bin, Zhang, Z. W., Zhang, L., Wu, H., Zhou, L. Y., & Zu, F. (2015). Identify the size of aerosol particles and analyze its characteristic at three AERONET sites in China. Zhongguo Huanjing Kexue/China Environmental Science, 35(4).

Wang, Y., Fan, S., & Feng, X. (2007). Retrieval of the aerosol particle size distribution function by incorporating a priori information. Journal of Aerosol Science, 38(8). https://doi.org/10.1016/j.jaerosci.2007.06.005

Whitby, K. T. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment (1967), 12(1–3). https://doi.org/10.1016/0004-6981(78)90196-8

Wiscombe, W. J. (1980). Improved Mie scattering algorithms. Applied Optics, 19(9). https://doi.org/10.1364/ao.19.001505

Wu, H., Wang, T., Wang, Q., Cao, Y., Qu, Y., & Nie, D. (2021). Radiative effects and chemical compositions of fine particles modulating urban heat island in Nanjing, China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2021.118201

Xia, X., Che, H., Zhu, J., Chen, H., Cong, Z., Deng, X., Fan, X., Fu, Y., Goloub, P., Jiang, H., Liu, Q., Mai, B., Wang, P., Wu, Y., Zhang, J., Zhang, R., & Zhang, X. (2016). Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization. Atmospheric Environment, 124. https://doi.org/10.1016/j.atmosenv.2015.05.071

Xia, Xiangao, Chen, H., Goloub, P., Zhang, W., Chatenet, B., & Wang, P. (2007). A compilation of aerosol optical properties and calculation of direct radiative forcing over an urban region in northern China. Journal of Geophysical Research Atmospheres, 112(12). https://doi.org/10.1029/2006JD008119

Xia, Xiangao, Li, Z., Holben, B., Wang, P., Eck, T., Chen, H., Cribb, M., & Zhao, Y. (2007). Aerosol optical properties and radiative effects in the Yangtze Delta region of China. Journal of Geophysical Research, 112(D22). https://doi.org/10.1029/2007jd008859

Yamasoe, M. A., Kaufman, Y. J., Dubovik, O., Remer, L. A., Holben, B. N., & Artaxo, P. (1998). Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR-B. Journal of Geophysical Research Atmospheres, 103(D24). https://doi.org/10.1029/98JD01211

Yamasoe, M. A., Von Randow, C., Manzi, A. O., Schafer, J. S., Eck, T. F., & Holben, B. N. (2006). Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-6-1645-2006

Yang, Y., Zhao, C., Wang, Y., Zhao, X., Sun, W., Yang, J., Ma, Z., & Fan, H. (2021). Multi-Source Data Based Investigation of Aerosol-Cloud Interaction Over the North China Plain and North of the Yangtze Plain. Journal of Geophysical Research: Atmospheres, 126(19). https://doi.org/10.1029/2021JD035609

Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z., & Wang, Y. (2018). Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China. Earth and Space Science, 5(1). https://doi.org/10.1002/2017EA000346

[Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., & (eds.). (2021). IPCC, 2021: Climate Change 2021: The Physical Science Basis. In Cambridge University Press. In Press.

Adetona, O., Li, Z., Sjödin, A., Romanoff, L. C., Aguilar-Villalobos, M., Needham, L. L., Hall, D. B., Cassidy, B. E., & Naeher, L. P. (2013). Biomonitoring of polycyclic aromatic hydrocarbon exposure in pregnant women in Trujillo, Peru - Comparison of different fuel types used for cooking. Environment International, 53. https://doi.org/10.1016/j.envint.2012.11.010

Alam, K., Trautmann, T., & Blaschke, T. (2011). Aerosol optical properties and radiative forcing over mega-city Karachi. Atmospheric Research, 101(3). https://doi.org/10.1016/j.atmosres.2011.05.007

Ångström, A. (1929). On the Atmospheric Transmission of Sun Radiation and on Dust in the Air. Geografiska Annaler, 11(2). https://doi.org/10.1080/20014422.1929.11880498

Ardon-Dryer, K., Dryer, Y., Williams, J. N., & Moghimi, N. (2020). Measurements of PM2.5 with PurpleAir under atmospheric conditions. Atmospheric Measurement Techniques. https://doi.org/10.5194/amt-13-5441-2020

Astete, J., Gastañaga, M. del C., & Pérez, D. (2014). Niveles de metales pesados en el ambiente y su exposición en la población luego de cinco años de exploración minera en Las Bambas, Perú 2010. Revista Peruana de Medicina Experimental y Salud Pública, 31(4). https://doi.org/10.17843/rpmesp.2014.314.120

Bodhaine, B. A., Wood, N. B., Dutton, E. G., & Slusser, J. R. (1999). On Rayleigh optical depth calculations. Journal of Atmospheric and Oceanic Technology, 16(11 PART 2). https://doi.org/10.1175/1520-0426(1999)016<1854:orodc>2.0.co;2

Boiyo, R., Kumar, K. R., Zhao, T., & Guo, J. (2019). A 10-Year Record of Aerosol Optical Properties and Radiative Forcing Over Three Environmentally Distinct AERONET Sites in Kenya, East Africa. Journal of Geophysical Research: Atmospheres, 124(3). https://doi.org/10.1029/2018JD029461

Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2011). Anthropogenic aerosols and the weakening of the south asian summer monsoon. Science, 334(6055). https://doi.org/10.1126/science.1204994

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11). https://doi.org/10.1002/jgrd.50171

Castro, T., Madronich, S., Rivale, S., Muhlia, A., & Mar, B. (2001). The influence of aerosols on photochemical smog in Mexico City. Atmospheric Environment, 35(10). https://doi.org/10.1016/S1352-2310(00)00449-0

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science. https://doi.org/10.1126/science.255.5043.423

Che, H., Qi, B., Zhao, H., Xia, X., Eck, T. F., Goloub, P., Dubovik, O., Estelles, V., Cuevas-Agulló, E., Blarel, L., Wu, Y., Zhu, J., Du, R., Wang, Y., Wang, H., Gui, K., Yu, J., Zheng, Y., Sun, T., … Zhang, X. (2018). Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-18-405-2018

Chen, B., Stein, A. F., Castell, N., de la Rosa, J. D., Sanchez de la Campa, A. M., Gonzalez-Castanedo, Y., & Draxler, R. R. (2012). Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmospheric Environment, 49. https://doi.org/10.1016/j.atmosenv.2011.12.014

Chen, H., Gu, X., Cheng, T., Yu, T., & Li, Z. (2013). Characteristics of aerosol types over China. Yaogan Xuebao/Journal of Remote Sensing, 17(6). https://doi.org/10.11834/jrs.20133028

Chýlek, P., Videen, G., Geldart, D. J. W., Dobbie, J. S., & Tso, H. C. W. (2000). Effective Medium approximations for Heterogeneous Particles. In Light Scattering by Nonspherical Particles. https://doi.org/10.1016/b978-012498660-2/50036-7

Commodore, A. A., Hartinger, S. M., Lanata, C. F., Mäusezahl, D., Gil, A. I., Hall, D. B., Aguilar-Villalobos, M., & Naeher, L. P. (2013). A pilot study characterizing real time exposures to particulate matter and carbon monoxide from cookstove related woodsmoke in rural Peru. Atmospheric Environment, 79. https://doi.org/10.1016/j.atmosenv.2013.06.047

De La Cruz, A. H., Roca, Y. B., Suarez-Salas, L., Pomalaya, J., Tolentino, D. A., & Gioda, A. (2019). Chemical characterization of PM 2.5 at rural and urban sites around the metropolitan area of Huancayo (Central Andes of Peru). Atmosphere. https://doi.org/10.3390/atmos10010021

Deep, A., Pandey, C. P., Nandan, H., Singh, N., Yadav, G., Joshi, P. C., Purohit, K. D., & Bhatt, S. C. (2021). Aerosols optical depth and Ångström exponent over different regions in Garhwal Himalaya, India. Environmental Monitoring and Assessment, 193(6). https://doi.org/10.1007/s10661-021-09048-4

Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I., Yang, P., & Slutsker, I. (2002). Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophysical Research Letters, 29(10). https://doi.org/10.1029/2001gl014506

Dubovik, O., Smirnov, A., Holben, B. N., King, M. D., Kaufman, Y. J., Eck, T. F., & Slutsker, I. (2000). Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. Journal of Geophysical Research Atmospheres, 105(D8). https://doi.org/10.1029/2000JD900040

Dubovik, Oleg, Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., & Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences, 59(3). https://doi.org/10.1175/1520-0469(2002)059%3C0590%3AVOAAOP%3E2.0.C

Dubovik, Oleg, & King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research Atmospheres, 105(D16). https://doi.org/10.1029/2000JD900282

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., Slutsker, I., & Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research Atmospheres, 104(D24). https://doi.org/10.1029/1999JD900923

Eck, T. F., Holben, B. N., Reid, J. S., O’Neill, N. T., Schafer, J. S., Dubovik, O., Smirnov, A., Yamasoe, M. A., & Artaxo, P. (2003). High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophysical Research Letters, 30(20). https://doi.org/10.1029/2003GL017861

Estevan, R., Martínez-Castro, D., Suarez-Salas, L., Moya, A., & Silva, Y. (2019). First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory, Peru. Atmospheric Environment: X. https://doi.org/10.1016/j.aeaoa.2019.100037

Fitzgerald, C., Aguilar-Villalobos, M., Eppler, A. R., Dorner, S. C., Rathbun, S. L., & Naeher, L. P. (2012). Testing the effectiveness of two improved cookstove interventions in the Santiago de Chuco Province of Peru. Science of the Total Environment, 420. https://doi.org/10.1016/j.scitotenv.2011.10.059

Flores-Rojas, J. L., Moya-Álvarez, A. S., Valdivia-Prado, J. M., Piñas-Laura, M., Kumar, S., Karam, H. A., Villalobos-Puma, E., Martínez-Castro, D., & Silva, Y. (2021). On the dynamic mechanisms of intense rainfall events in the central Andes of Peru, Mantaro valley. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2020.105188

Gadhavi, H., & Jayaraman, A. (2010). Absorbing aerosols: Contribution of biomass burning and implications for radiative forcing. Annales Geophysicae, 28(1). https://doi.org/10.5194/angeo-28-103-2010

Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R. R., Thompson, A. M., & Schafer, J. S. (2012). An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. Journal of Geophysical Research Atmospheres, 117(17). https://doi.org/10.1029/2012JD018127

Gonzales, G. F., Zevallos, A., Gonzales-Castañeda, C., Nuñez, D., Gastañaga, C., Cabezas, C., Naeher, L., Levy, K., & Steenlan, K. (2014). Contaminación ambiental, variabilidad climática y cambio climático: una revisión del impacto en la salud de la población peruana. Revista Peruana de Medicina Experimental y Salud Pública, 31(3). https://doi.org/10.17843/rpmesp.2014.313.94

Han, X., Aguilar-Villalobos, M., Allen, J., Carlton, C. S., Robinson, R., Bayer, C., & Naeher, L. P. (2005). Traffic-related occupational exposures to PM2.5, CO, and VOCs in Trujillo, Peru. International Journal of Occupational and Environmental Health, 11(3). https://doi.org/10.1179/oeh.2005.11.3.276

Haywood, J. M., & Shine, K. P. (1995). The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophysical Research Letters, 22(5). https://doi.org/10.1029/95GL00075

Hernández-Vásquez, A., & Díaz-Seijas, D. (2017). Contaminación ambiental y repositorios de datos históricos de contaminantes atmosféricos en Perú. In Salud Publica de Mexico (Vol. 59, Issue 5). https://doi.org/10.21149/8476

Hochgatterer, K., Moshammer, H., & Haluza, D. (2013). Dust is in the air: Effects of occupational exposure to mineral dust on lung function in a 9-year study. Lung, 191(3). https://doi.org/10.1007/s00408-013-9463-7

Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’Neill, N. T., … Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research Atmospheres, 106(D11). https://doi.org/10.1029/2001JD900014

Jacobson, M. Z. (2000). A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophysical Research Letters, 27(2). https://doi.org/10.1029/1999GL010968

Kim, S. W., Yoon, S. C., Kim, J., & Kim, S. Y. (2007). Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmospheric Environment, 41(8). https://doi.org/10.1016/j.atmosenv.2006.10.044

Kiran Kumar, T., Gadhavi, H., Jayaraman, A., Sai Suman, M. N., & Vijaya Bhaskara Rao, S. (2013). Temporal and spatial variability of aerosol optical depth over South India as inferred from MODIS. Journal of Atmospheric and Solar-Terrestrial Physics, 94. https://doi.org/10.1016/j.jastp.2012.12.010

Levelt, P. F., Hilsenrath, E., Leppelmeier, G. W., Van Den Oord, G. H. J., Bhartia, P. K., Tamminen, J., De Haan, J. F., & Veefkind, J. P. (2006). Science objectives of the ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2006.872336

Li, Z., Commodore, A., Hartinger, S., Lewin, M., Sjödin, A., Pittman, E., Trinidad, D., Hubbard, K., Lanata, C. F., Gil, A. I., Mäusezahl, D., & Naeher, L. P. (2016). Biomonitoring Human Exposure to Household Air Pollution and Association with Self-reported Health Symptoms – A Stove Intervention Study in Peru. Environment International, 97. https://doi.org/10.1016/j.envint.2016.09.011

Liou, K. N. (2002). An Introduction to Atmospheric Radiation (Google eBook). In International Geophysics (Vol. 84).

Lizarraga-Isla, I. J., Pomalaya-Valdez, J. E., Suarez-Salas, L. F., & Bendezu-Roca, Y. (2019). Dispersion of particulate material 2.5 emitted by roasted chicken restaurants using the aermod model in huancayo metropolitan, peru. DYNA (Colombia), 86(211). https://doi.org/10.15446/dyna.v86n211.78812

Loaiza, I., Hurtado, D., Miglio, M., Orrego, H., & Mendo, J. (2015). Tissue-specific Cd and Pb accumulation in Peruvian scallop (Argopecten purpuratus) transplanted to a suspended and bottom culture at Sechura Bay, Peru. Marine Pollution Bulletin, 91(2). https://doi.org/10.1016/j.marpolbul.2014.09.058

Middleton, N., Yiallouros, P., Kleanthous, S., Kolokotroni, O., Schwartz, J., Dockery, D. W., Demokritou, P., & Koutrakis, P. (2008). A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: The effect of short-term changes in air pollution and dust storms. Environmental Health: A Global Access Science Source, 7. https://doi.org/10.1186/1476-069X-7-39

Morales-Ancajima, V. C., Tapia, V., Vu, B. N., Liu, Y., Alarcón-Yaquetto, D. E., & Gonzales, G. F. (2019). Increased Outdoor PM2.5 Concentration Is Associated with Moderate/Severe Anemia in Children Aged 6-59 Months in Lima, Peru. Journal of Environmental and Public Health, 2019. https://doi.org/10.1155/2019/6127845

Mukherjee, T., & Vinoj, V. (2020). Atmospheric aerosol optical depth and its variability over an urban location in Eastern India. Natural Hazards, 102(2). https://doi.org/10.1007/s11069-019-03636-x

Ordoñez-Aquino, C., & Sánchez-Ccoyllo, O. (2017). Caracterización quimica - morfológica del PM2,5 en Lima Metropolitana mediante microscopía electónica de barrido (MEB). Acta Nova, 8.

Otero, L. A., Fochesatto, G. J., Ristori, P. R., Flamant, P. H., Piacentini, R. D., Holben, B., & Quel, E. J. (2004). Simple method to derive aerosol microphysical properties from AERONET multiwavelength direct solar measurements. Advances in Space Research, 34(10 SPEC. ISS.). https://doi.org/10.1016/j.asr.2003.07.059

Otero, L., Ristori, P., Holben, B., & Quel, E. (2006). Espesor óptico de aerosoles durante el año 2002 para diez estaciones pertenecientes a la red AERONET-NASA Aerosol Optical Thickness at ten AERONET-NASA stations during 2002. In www.sedoptica.es Opt. Pura Apl (Vol. 39, Issue 4). www.sedoptica.es.

Pacsi Valdivia, S., & Llanos Puga, C. M. (2017). Evaluación de la composición química del material particulado PM2,5 en la Universidad Nacional Agraria La Molina. Anales Científicos, 78(2). https://doi.org/10.21704/ac.v78i2.1058

Pearce, J. L., Rathbun, S. L., Aguilar-Villalobos, M., & Naeher, L. P. (2009). Characterizing the spatiotemporal variability of PM2.5 in Cusco, Peru using kriging with external drift. Atmospheric Environment, 43(12). https://doi.org/10.1016/j.atmosenv.2008.10.060

Pokharel, M., Guang, J., Liu, B., Kang, S., Ma, Y., Holben, B. N., Xia, X., Xin, J., Ram, K., Rupakheti, D., Wan, X., Wu, G., Bhattarai, H., Zhao, C., & Cong, Z. (2019). Aerosol Properties Over Tibetan Plateau From a Decade of AERONET Measurements: Baseline, Types, and Influencing Factors. Journal of Geophysical Research: Atmospheres, 124(23). https://doi.org/10.1029/2019JD031293

Ramachandran, S. (2018). Atmospheric aerosols: Characteristics and radiative effects. In Atmospheric Aerosols: Characteristics and Radiative Effects. https://doi.org/10.1201/9781315152400

Reátegui-Romero, W., Sánchez-Ccoyllo, O. R., Andrade, M. de F., & Moya-Alvarez, A. (2018). PM2.5 Estimation with the WRF/Chem Model, Produced by Vehicular Flow in the Lima Metropolitan Area. Open Journal of Air Pollution, 07(03). https://doi.org/10.4236/ojap.2018.73011

Regmi, J., Poudyal, K. N., Pokhrel, A., Gyawali, M., Tripathee, L., Panday, A., Barinelli, A., & Aryal, R. (2020). Investigation of aerosol climatology and long-range transport of aerosols over Pokhara, Nepal. Atmosphere, 11(8). https://doi.org/10.3390/ATMOS11080874

Remer, L. A., & Kaufman, Y. J. (1998). Dynamic aerosol model: Urban/industrial aerosol. Journal of Geophysical Research Atmospheres, 103(D12). https://doi.org/10.1029/98JD00994

Ricchiazzi, P., Yang, S., Gautier, C., & Sowle, D. (1998). SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. Bulletin of the American Meteorological Society, 79(10). https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2

Rojas, F. J., Pacsi, S., Sánchez-Ccoyllo, O. R., & Perales, M. M. (2019). Pronóstico de Reducción de Emisiones, de Enfermos y de Gastos Asociados al incluir el Gas Natural dentro de la Matriz Energética en Perú. Información Tecnológica, 30(3). https://doi.org/10.4067/s0718-07642019000300117

Romero, Y., Chicchon, N., Duarte, F., Noel, J., Ratti, C., & Nyhan, M. (2020). Quantifying and spatial disaggregation of air pollution emissions from ground transportation in a developing country context: Case study for the Lima Metropolitan Area in Peru. Science of the Total Environment, 698. https://doi.org/10.1016/j.scitotenv.2019.134313

Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., Decarlo, P. F., Jimenez, J. L., Livingston, J. M., Redemann, J., Dubovik, O., & Strawa, A. (2010). Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics, 10(3). https://doi.org/10.5194/acp-10-1155-2010

Sánchez-Ccoyllo, O. R., Ordoñez-Aquino, C. G., Muñoz, Á. G., Llacza, A., Andrade, M. F., Liu, Y., Reátegui-Romero, W., & Brasseur, G. (2018). Modeling Study of the Particulate Matter in Lima with the WRF-Chem Model: Case Study of April 2016. International Journal of Applied Engineering Research, 13(11). https://doi.org/10.37622/ijaer/13.11.2018.10129-10141

Sayahi, T., Kaufman, D., Becnel, T., Kaur, K., Butterfield, A. E., Collingwood, S., Zhang, Y., Gaillardon, P. E., & Kelly, K. E. (2019). Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113131

Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics. Atmospheric Chemistry and Physics, 5(1).

Shifrin, K. S. (1995). Simple relationships for the Ångström parameter of disperse systems. Applied Optics, 34(21). https://doi.org/10.1364/ao.34.004480

Shin, S. K., Tesche, M., Noh, Y., & Müller, D. (2019). Aerosol-type classification based on AERONET version 3 inversion products. Atmospheric Measurement Techniques, 12(7). https://doi.org/10.5194/amt-12-3789-2019

Silva, J., Rojas, J., Norabuena, M., Molina, C., Toro, R. A., & Leiva-Guzmán, M. A. (2017). Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-017-6327-2

Sinyuk, A., Dubovik, O., Holben, B., Eck, T. F., Breon, F. M., Martonchik, J., Kahn, R., Diner, D. J., Vermote, E. F., Roger, J. C., Lapyonok, T., & Slutsker, I. (2007). Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. Remote Sensing of Environment, 107(1–2). https://doi.org/10.1016/j.rse.2006.07.022

Srivastava, A. K., Singh, S., Tiwari, S., & Bisht, D. S. (2012). Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin. Environmental Science and Pollution Research, 19(4). https://doi.org/10.1007/s11356-011-0633-y

Stone, R., Anderson, G., Andrews, E., Dutton, E., Harris, J., Shettle, E., & Berk, A. (2005). Asian dust signatures at Barrow: Observed and simulated. Incursions and impact of Asian dust over Northern Alaska. 2005 IEEE Workshop on Remote Sensing of Atmospheric Aerosols. https://doi.org/10.1109/AERSOL.2005.1494152

Stone, R. S., Anderson, G. P., Andrews, E., Dutton, E. G., Shettle, E. P., & Berk, A. (2007). Incursions and radiative impact of Asian dust in northern Alaska. Geophysical Research Letters, 34(14). https://doi.org/10.1029/2007GL029878

Suárez-Salas, L., Álvarez Tolentino, D., Bendezú, Y., & Pomalaya, J. (2017). CARACTERIZACIÓN QUÍMICA DEL MATERIAL PARTICULADO ATMOSFÉRICO DEL CENTRO URBANO DE HUANCAYO, PERÚ. Revista de La Sociedad Química Del Perú. https://doi.org/10.37761/rsqp.v83i2.197

Suazo, J. M. A., Salas, L. S., Cruz, A. R. H. D. La, Vasquez, R. A., Aylas, G. R., Condor, A. R., Rojas, E. R., Ccuro, F. M., Rojas, J. L. F., & Karam, H. A. (2020). Direct radiative forcing due to aerosol properties at the peruvian antarctic station and metropolitan huancayo area. Anuario Do Instituto de Geociencias. https://doi.org/10.11137/2020_4_404_412

Suazo, M. J. A., Condor, A. G. R., Aylas, G. Y. R., Rojas, L. J. F., Vasquez, R. A., Suazo, N. A., & Karam, H. A. (2020). Estimación de la Turbidez Atmosférica Usando el Modelo IQC en el Área Metropolitana de Huancayo – Perú. Anuario Do Instituto de Geociencias, 43(3), 72–83. https://doi.org/10.11137/2020_3_72_83

Tapia, V., Carbajal, L., Vásquez, V., Espinoza, R., Vásquez-Velásquez, C., Steenland, K., & Gonzales, G. F. (2018). Reordenamiento vehicular y contaminación ambiental por material particulado (2,5 y 10), dióxido de azufre y dióxido de nitrógeno en Lima Metropolitana, Perú. Revista Peruana de Medicina Experimental y Salud Pública, 35(2). https://doi.org/10.17843/rpmesp.2018.352.3250

Thomason, L. W., Herman, B. M., & Reagan, J. A. (1983). The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses. Journal of the Atmospheric Sciences, 40(7). https://doi.org/10.1175/1520-0469(1983)040<1851:TEOAAW>2.0.CO;2

Tohidi, R., Sajadi, B., & Ahmadi, G. (2020). The effect of nasal airway obstruction on the dispersion and deposition of inhaled volatile droplets in the human nasal cavity: A numerical study. Journal of Aerosol Science, 150. https://doi.org/10.1016/j.jaerosci.2020.105650

Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R. S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G. H., Myhre, C. L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., … Yamanouchi, T. (2007). Aerosols in polar regions: A historical overview based on optical depth and in situ observations. In Journal of Geophysical Research Atmospheres (Vol. 112, Issue 16). https://doi.org/10.1029/2007JD008432

Wang, H. Bin, Zhang, Z. W., Zhang, L., Wu, H., Zhou, L. Y., & Zu, F. (2015). Identify the size of aerosol particles and analyze its characteristic at three AERONET sites in China. Zhongguo Huanjing Kexue/China Environmental Science, 35(4).

Wang, Y., Fan, S., & Feng, X. (2007). Retrieval of the aerosol particle size distribution function by incorporating a priori information. Journal of Aerosol Science, 38(8). https://doi.org/10.1016/j.jaerosci.2007.06.005

Whitby, K. T. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment (1967), 12(1–3). https://doi.org/10.1016/0004-6981(78)90196-8

Wiscombe, W. J. (1980). Improved Mie scattering algorithms. Applied Optics, 19(9). https://doi.org/10.1364/ao.19.001505

Wu, H., Wang, T., Wang, Q., Cao, Y., Qu, Y., & Nie, D. (2021). Radiative effects and chemical compositions of fine particles modulating urban heat island in Nanjing, China. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2021.118201

Xia, X., Che, H., Zhu, J., Chen, H., Cong, Z., Deng, X., Fan, X., Fu, Y., Goloub, P., Jiang, H., Liu, Q., Mai, B., Wang, P., Wu, Y., Zhang, J., Zhang, R., & Zhang, X. (2016). Ground-based remote sensing of aerosol climatology in China: Aerosol optical properties, direct radiative effect and its parameterization. Atmospheric Environment, 124. https://doi.org/10.1016/j.atmosenv.2015.05.071

Xia, Xiangao, Chen, H., Goloub, P., Zhang, W., Chatenet, B., & Wang, P. (2007). A compilation of aerosol optical properties and calculation of direct radiative forcing over an urban region in northern China. Journal of Geophysical Research Atmospheres, 112(12). https://doi.org/10.1029/2006JD008119

Xia, Xiangao, Li, Z., Holben, B., Wang, P., Eck, T., Chen, H., Cribb, M., & Zhao, Y. (2007). Aerosol optical properties and radiative effects in the Yangtze Delta region of China. Journal of Geophysical Research, 112(D22). https://doi.org/10.1029/2007jd008859

Yamasoe, M. A., Kaufman, Y. J., Dubovik, O., Remer, L. A., Holben, B. N., & Artaxo, P. (1998). Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR-B. Journal of Geophysical Research Atmospheres, 103(D24). https://doi.org/10.1029/98JD01211

Yamasoe, M. A., Von Randow, C., Manzi, A. O., Schafer, J. S., Eck, T. F., & Holben, B. N. (2006). Effect of smoke and clouds on the transmissivity of photosynthetically active radiation inside the canopy. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-6-1645-2006

Yang, Y., Zhao, C., Wang, Y., Zhao, X., Sun, W., Yang, J., Ma, Z., & Fan, H. (2021). Multi-Source Data Based Investigation of Aerosol-Cloud Interaction Over the North China Plain and North of the Yangtze Plain. Journal of Geophysical Research: Atmospheres, 126(19). https://doi.org/10.1029/2021JD035609

Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z., & Wang, Y. (2018). Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China. Earth and Space Science, 5(1). https://doi.org/10.1002/2017EA000346

58

Descargas

Publicado

May 28, 2024

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.